Large Deviations Results
for Spatially Extended Dynamical Systems

THESE
PRESENTEE AU DEPARTEMENT DE MATHEMATIQUES

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L’'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES
PAR

Jean-Baptiste BARDET

Mathématicien diplomé de I'Université de Lyon |
originaire de France

acceptée sur proposition du jury:

Prof. Anthony C. Davison, président du jury
Prof. Gérard Ben Arous, directeur de these
Prof. Viviane Baladi, rapporteur
Prof. Patrick Cattiaux, rapporteur
Prof. Charles-Edouard Pfister, rapporteur
Prof. Hans-Henrik Rugh, rapporteur

Lausanne, EPFL
2002






REMERCIEMENTS

C’est une grande chance d’avoir pu faire ma these sous la direction de Gérard
Ben Arous. Des les stages de maitrise et de DEA, et plus encore pendant cette
these, il m’a fait connaitre le monde de la recherche en mathématiques comme
un domaine riche, exigeant et fascinant. Travailler avec lui a Lausanne m’a
permis de découvrir un vaste champ des mathématiques, des probabilités aux
systemes dynamiques. En plus de mon sujet de theése proprement dit, je le dois
aussi aux nombreuses activités de sa chaire (séminaires, groupes de travail, ...)
et a son talent pour transmettre ses vastes connaissances. Je tiens aussi a le
remercier pour son enthousiasme communicatif et la confiance qu’il a su me
faire au cours de ce travail.

Je remercie chaleureusement Viviane Baladi, qui a accepté de faire partie de
mon jury, apres avoir joué un role important tout au long de ma thése : comme
référente en théorie ergodique, puisqu’elle a toujours accepté de répondre a mes
questions sur ce domaine, mais aussi pour toutes les conférences ou elle m’a
proposé d’aller, en particulier I’Ecole d’Hiver de Sils-Maria, qu’elle organisait
et qui a contribué a ma découverte du sujet.

Je suis tres reconnaissant a Hans-Henrik Rugh d’avoir “écrit le bon ar-
ticle au bon moment”, et surtout de m’avoir accordé beaucoup de temps et
d’encouragements lorsque j’ai voulu lire et développer cet article pour obtenir
une partie des résultats de cette these. Je le remercie aussi d’avoir accepté
d’étre dans mon jury.

Je remercie vivement Patrick Cattiaux de I'intérét qu’il a montré pour ma
recherche, dés mon premier passage a Nanterre et jusqu’a sa présence dans
mon jury. Toutes ses remarques et propositions nourriront certainement ma
recherche a venir.

Je remercie également Charles Pfister pour sa disponibilité lors de mes ques-
tions et sa présence dans mon jury, ainsi qu’Anthony Davison, qui a accepté
de présider ce jury.

J’al préparé l'essentiel de cette these a TEPFL, ol existait un tres actif et
sympathique groupe de thésards en probabilités. Je remercie chacun d’entre
eux ainsi que tous les collegues du DMA. Anabela Querino s’est montrée par-
ticulierement attentive et efficace pour m’aider a régler tous les problemes
administratifs et techniques liés a cette these, je ’en remercie vivement. Cette



v Remerciements

these doit aussi beaucoup a Jirka et Sacha avec qui j’ai partagé beaucoup de
balades a vélo ou en jazz, de bieres et de maths, et qui m’ont souvent aidé a
parer a mes insuffisances informatiques ou a mon éloignement de Lausanne.

En effet, j’ai passé la derniere année de cette these a I’Université de Nan-
terre, dans le laboratoire MODAL’X. J’apprécie énormément 1’ambiance de
cette équipe, ou je me suis senti immédiatement intégré. Je remercie tous
les Nanterrois pour leur accueil, et en particulier Sylvie Méléard pour son
dynamisme permanent et contagieux.

J’ai aussi profité pendant cette thése de plusieurs congres, conférences et
invitations, et tiens a remercier tous les organisateurs et les chercheurs que j’ai
pu y rencontrer, en particulier X. Bressaud, J.R. Chazottes, J.D. Deuschel, G.
Keller, Y. Kifer, C. Liverani, A. Le Ny et M. Viana. Beaucoup de ces rencontres
étaient organisées et financées dans le cadre du programme PRODYN de I’ESF.

Cette these s’est développée en méme temps que notre vie a deux avec Ma-
gali, ce qui donne a cette derniére un role bien particulier dans I’aboutissement
de ce travail. Elle a supporté avec patience et m’a aidé a faire fructifier les mo-
ments de découragement quand ma theése n’avancait pas comme les passages
d’euphorie irraisonnée quand elle avancait. Je ne la remercierai jamais assez
ici, mais compte bien me rattraper en la soutenant a mon tour dans son propre
travail de these, et en vivant longtemps et heureux avec elle.

Il me reste a remercier tous ceux avec qui j’ai partagé des moments intenses
de ma vie durant cette thése, en particulier mes parents, Louise, Marie et Eric,
Pierre-Luc, les parents de Magali et Nicolas, Thierry, Emilie, Marjo et Bruno,
Marc, les copains du MRJC, et beaucoup d’autres...



ABSTRACT

This Ph-D Thesis is devoted to the study of limit theorems for coupled map
lattices, which are models of discrete-time dynamical systems on lattices.

We consider a system constituted by expanding maps of the circle under a
small coupling. We prove that the associated spatiotemporal measure satisfies
under Lebesgue measure a Large Deviations Principle. The rate function is
expressed in the setting of thermodynamic formalism and with a potential
which appears in the main step of the proof - a Volume Lemma result - to
describe sharp metric estimates of the system.

We study also the temporal asymptotics of the same coupled map lattices.
Under stronger regularity assumptions, we prove that the temporal empirical
mean of any regular enough observable satisfies a Central Limit Theorem and
a Moderate Deviations Principle. We also establish a partial Large Devia-
tions result, which implies in particular an exponential rate of convergence to
equilibrium.

RESUME

Nous étudions dans cette these des théoremes limites pour des réseaux d’ap-
plications couplées, qui sont des modeles de systemes dynamiques en temps
discrets et sur réseau.

Nous considérons un réseau d’applications dilatantes du cercle avec faible cou-
plage et prouvons que la mesure empirique spatiotemporelle associée satisfait,
sous la mesure de Lebesgue, un Principe de Grandes Déviations. La fonction
de taux s’exprime dans le cadre du formalisme thermodynamique, a I'aide d’un
potentiel qui apparait dans I’étape principale de la preuve - un résultat du type
Lemme de Volume - pour décrire des estimées métriques fines sur le systeme.
Nous étudions aussi le comportement asymptotique en temps des mémes ré-
seaux d’applications couplées. Sous des hypotheses de régularité plus fortes,
nous montrons que la moyenne empirique temporelle d’observables assez régu-
lieres satisfait sous la mesure de Lebesgue un Théoreme Central Limite et un
Principe de Déviations Modérées. Nous établissons aussi un résultat partiel de
Grandes Déviations, qui implique en particulier la convergence exponentielle
vers I’équilibre.
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INTRODUCTION

This thesis is devoted to the study of limit results, and in particular large devi-
ations principles, for models of spatially extended dynamical systems, namely
the coupled map lattices.

In this introduction, we briefly present the model and the results obtained.
We insist on the links with existing results and on the perspectives offered by
this work.

Coupled map lattices

Coupled map lattices are models of spatially extended dynamical systems,
introduced by Kaneko in 1983. They consist of discrete time evolutions on an
infinite product of spaces, indexed by a discrete lattice: the evolution at each
step of time is the composition of local dynamics on each site and of coupling
between sites.

Let us give a first example to make things more precise. It will also give us
a simple setting for the presentation of our results. We work on X = (S')Z,
where we consider S = R/Z for the notations, and define on each site the
local dynamics by an expanding map of the circle f,

f'(x)|>A>1 VzeSs.

A simple coupling is given by G, : X — X defined by

(Ge(@))s = (1= )i + S7is + S7isa.

This is a diffusion operator with coupling strength ¢ (for ¢ = 0, Gy = Id).
This example is used extensively for couplings between maps of the interval,
in particular for numerical studies. However, in the context of circle maps,
it is not well defined, and could for example be replaced by (G.(x)); = z; +
& sin(27m (21 — 2;)) + £ sin(27 (241 — 7)), which gives a smooth adaptation
of it.

The coupled map lattice is then F' = F, = G.oFy, where Fj is the uncoupled
map defined by (Fo(x)); = f(x;). We want to study the iterations of this map
F.
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To see where the interest of this model is, we compare it to other evolution
equations.

Consider for example a partial differential equation of the type

ou 0%u

5 = o2 + &(u),
with @ : R — R. This is called a reaction-diffusion equation, where ® governs
the local reaction and % imposes diffusion.
Our coupled map can be seen as a discretized equivalent of a solution u:(x)
of this equation: the reaction is localized on S' and expressed by the map f.
The diffusion term becomes G.. These two effects are completely separated in
two functions, and time is also discretized.

Our model can also be compared to a cellular automata, which is a map
acting on {0,..., N}Z, for example the well known example of the game of
the life. For cellular automata, there are no interesting local dynamics, and
in particular no local chaotic behavior, since the state space is finite. All the
dynamics comes from the the couplings between sites, whereas for partial dif-
ferential equations and coupled map lattices the interest lies in the competition
between the disorder of the local dynamics and the organization due to the
coupling.

If the initial project of using coupled map lattices as approximations of
partial differential equations is far from having been completed yet, the in-
termediate complexity of coupled map lattices gives rise to many interesting
phenomena. There occurs for instance at small coupling spatiotemporal chaos,
with strong decorrelation in time and space. This gives a simpler version of
turbulence observed in fluid dynamics.

For some choices of local maps, and for stronger coupling, very coherent struc-
tures appear with an intermediate regime of intermittency.

All these behaviors are briefly described in Chapter 1, with references to the
rich literature in this field. We also give a review of existing results in the
mathematical study of spatiotemporal chaos.

Since the aim of this thesis is to develop large deviations results for the
asymptotic study of coupled map lattices, we present in Chapter 2 the existing
results for the temporal behavior of dynamical systems on one site.

The remainder of the thesis is devoted to our results, which we present
below.
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Spatiotemporal description

We study in Chapter 3 the limit behavior of the spatiotemporal empirical
measures associated to the coupled map F

— 1 ) 1
RT(ac) = m Z 5510Ft(m) eM (X)a

0<t<T
—T<i<T

where S denotes the spatial shift (defined by (Sz); = z;,1) and M'(X) the
space of probability measures on X.

Theorem 3.1.2 states that under the explicit assumptions of weak coupling
(3.7), Ry satisfies under initial measure 7, the product of Lebesgue measures
on the circles, a large deviations principle with rate function

La() = —hr,s) (1) — [y pdp if pis invariant by F and S,
st ,U') - .
400 otherwise,

with hp 5y the metric entropy associated to the 2-dimensional dynamical sys-
tem (F,S) and ¢ a potential associated to the dynamics: —¢ plays the role of
the logarithm of Jacobian per site of F'. This result is true for a larger class
of systems (with more general couplings and in any dimension) and means,
roughly, that

e : Fra) ~ )~ exp (TCT+ 1) (o) + [ odr)).

This implies in particular that Ry converges exponentially fast to the set of
equilibrium measures associated to ¢

BQ() = {v € M) : himsy() + [ ¢dv=0).

This large deviations principle is related to the series of papers presented
in Section 1.3.1: the potential ¢ is constructed in [53], where Jiang and Pesin
prove also that under weak coupling assumptions, there is a unique equilibrium
measure v associated to ¢, which is spatiotemporally mixing,

/goFtOSn-hdl/—)/gdl//hdl/,
x x x

when ¢ or |n| tends to infinity.
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In this range of weak coupling, our large deviations result is a refinement
stating exponential convergence to the equilibrium measure v.

However, our method does not use this result of uniqueness of equilibrium
measure, neither the coding by a Gibbs measure on a shift system which is
the key tool for all proofs of uniqueness of equilibrium measures. Our proof is
developed directly in the thermodynamic formalism associated to the system
(F,S). The main step of the proof is a “Volume Lemma” result, which is
interesting by itself. It is stated as Theorem 3.1.1 and says that the potential
¢ describes the size under m of sets of points whose orbit follows a fixed orbit
on given time and space.

Such a spatiotemporal large deviations principle is hence similar, concern-
ing the result and the method of proof, to large deviations for Gibbs measures
on shift systems, proven in [42, 31, 81]. These results are valid in great gen-
erality and are in particular known to occur in phase transition situations, i.e.
where there are at least two Gibbs measures.

In our case, we must however work under restrictive assumptions: we need
weak coupling to preserve expansivity of the map or even to construct the
adequate potential . We don’t know if our assumptions could cover a case
with more than one equilibrium measure.

More generally, the situation of a stronger coupling needs to be clarified:
we do not know if organization of the system into coherent structures is really
linked to phase transitions in the sense of equilibrium measures or to other
effects as, for example, bifurcations to stable periodic orbits.

We think that a step further in the comprehension of thermodynamic for-
malism for coupled map lattices can be done by developing a description of
equilibrium measures as Gibbs measures. A possible starting point is the
Gibbsian formalism introduced by Haydn and Ruelle [45, 94] for single maps
satisfying expansiveness and specification (see a presentation of this formalism
in Section 2.3.4). This is one of our aims for future research.
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Temporal description

We adopt in Chapter 4 a different approach and study the behavior of the
system under the temporal dynamics F' only. We require that the local map
is holomorphic in a neighborhood of the circle, and we need similar regular-
ity assumptions on the coupling, which are satisfied by the example of this
Introduction.

Most papers presented in Section 1.3.2 are concerned with this setting:
Bricmont and Kupiainen [12], Baladi et al [4], and more recently Rugh [95]
obtained the existence and uniqueness in a restricted set of measures of an
invariant measure v which is locally absolutely continuous with respect to
Lebesgue measure and mixing.

We work under the same assumptions as in [95] and consider for any regular
enough observable u : X — R the asymptotic behavior under various scalings
of the empirical mean of u,

Sru(z) = i: uo F'(z).

We write m,, = fx u dv and show in Theorem 4.2.3 that if © can not be written
asu=g— goF with g € L*(v), then there exists a positive constant o2 such
that:

e Central Limit Theorem:

<STu —Tmy,
VTa,

e Moderate Deviations Principle: for any 1/2 < o < 1

__ STu(x) —Tm, 20—1 a’
m{m: Ta ~a Nexp(—T ﬁ)

u

) ) =5 w0,

These two results describe the small and moderate deviations (of order 7%
with 1/2 < a < 1) of the partial sum Sr around T'm,,.

We also obtain, in Theorem 4.2.2; a partial large deviations result, which
describes the fluctuations of order 7" there is a convex rate function I,, with a
unique zero at m, and there are a, < m, < b, such that S7u/T satisfies under
m a complete large deviations upper bound and a partial large deviations lower
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bound on the interval (ay, b,) with rate function I,. This implies in particular
that Spu/T converges exponentially fast to m,: if A is such that m, ¢ A, then

1
limsupflogm{z : Sru(?) € A} < 0.

T—o00 T

This is another refinement of the ergodic behavior of Syu/T.

Proofs of these results rely on a modification of the arguments of [95] to
construct perturbed transfer operators associated to observables U. A pertur-
bation argument allows to preserve the spectral gap property proven in [95] to
small observables. The rate function is then obtained around the mean m,, as
the Legendre transform of the logarithm of the main eigenvalue of a perturbed
operator. And the main limitation of our result is that we do not get an explicit
form for this rate function. This limitation is strongly related to the temporal
viewpoint adopted in this work: we can not express natural objects in terms
of thermodynamic formalism since the infinite dimensional setup makes that
the reference potential — logdet DF' does not make sense and metric entropy
is often infinite.

A comparison of both large deviations results on the trivial example of
the uncoupled map Fj clarifies the essential differences between them. In this
case, one easily obtains a large deviations principle for the temporal empirical
measure

1 T-1
Ly(z) = T Z OF(z)
=0

by a projective limit method. Lr(x) satisfies a large deviations principle with
rate function

Liemp (1) = Ali_)IIZId In(pa) = Ali—)HZld <—hF0,A (up) + /log det DFy o d,uA>

if p is F-invariant and Iiemp(p) is infinite otherwise. For p = ®;czap; a F-
invariant product measure, we get the simpler expression

Famsli) = 3 =)+ [[1og | = 3 1)

i€Z4d i€Z4

whereas the rate function I governing large deviations of the spatiotemporal
empirical measure simplifies in this particular case to

if p; = po for all ¢ € Z,

I
&Wﬁ*ﬂmﬁm+/bwwm={MM) |
X o0 otherwise.
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This simple example shows that both large deviations results obtained in
this thesis give two radically different images of the system: the spatiotemporal
rate function sees (i.e. is finite on) only those measures which are invariant
under the spatial shift whereas the only shift-invariant measure seen by the
temporal rate function is the product of equilibrium measures.

Much remains to be done to better understand the temporal result and
its associated variational principle: there exists nowadays no proof that the
rate function in the coupled case remains the limit of the corresponding rate
functions on finite lattices. This analysis would help to obtain an identifica-
tion of the rate function or of the associated pressure with intrinsic quantities
characterizing the system, or to define a new complete variational principle.
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Other perspectives

We think it will be an important step for the comprehension of collective
dynamics in coupled map lattices to derive the same kind of large deviations
results in the mean field version of this model, the globally coupled map.

One can indeed hope that, as in Statistical Mechanics, mean field models
are simpler to study than those with local interactions, because the geometry
of the system is made simpler. We know also from Statistical Mechanics that
large deviations can play a great role in the detection of phase transitions.
Furthermore, in their recent preprint [8], Blank and Bunimovich claim that
phase transitions situations are easier to obtain for globally coupled maps.

Another direction of research is to develop large deviations estimates for
single site maps with a non-uniformly hyperbolic behavior.

The example of a map of the interval with an indifferent fixed point pre-
sented in Section 2.3.7 is promising since it exhibits non exponential decay for
large deviations. A better comprehension of this phenomenon will be a first
step to study coupled map lattices with such more general local maps.

From the physical literature we notice in particular that authors exhibit
the so-called non-trivial collective behavior by a study of the evolution in time
of the spatial average over the sites, see Section 1.2.3.

This phenomenon is completely different from the ones we studied and
could present really interesting probabilistic properties. This constitutes an-
other topic we want to develop.



1. COUPLED MAP LATTICES

This first Chapter gives a review of results concerning coupled map lattices
since their introduction by Kaneko in 1983.

After a short description of the models, we present the results of physical
literature: we restrict to a phenomenologic description of the various behaviors,
and refer the interested reader to reference books and papers for more details
on the analysis of theses phenomena.

We close this Chapter with a presentation in Section 1.3 of mathematical work
on these models. Most of it is consacred to the case of weak coupling, where
it is shown that various statistical properties of the uncoupled system are
preserved.

1.1 Presentation of the different models

We find under the general terminology of “coupled map lattices” many models,
all of which consist of deterministic interactions between local maps.
We distinguish between:

e coupled map lattices (CML), for which the interactions are local and the
spatial structure of the lattices Z¢ will be crucial;

e globally coupled maps (GCM), for which the interactions are global. This
is a mean-field version of CML.

We follow for the choice of these terms Kaneko and Tsuda in [62].

Below, we present shortly both viewpoints, although our concern will be cou-
pled map lattices, with local interactions.

1.1.1 Coupled map lattices

We consider the state space X = M Zd, with d > 1 and M the space on which
the local maps act. It can be an interval of R, the circle S' or more generally
any compact Riemannian manifold.

At each step of time, the dynamics will consist in:
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e the action of a local map f; : M — M on each site i € Z¢;

e the action of a coupling map G : X — X on the whole space.

The dynamical system we study is the coupled map:

F:GOF(), WhereF0:®fi
i€z
The aim is to understand the evolution of a given initial condition (i.e. an

initial point 2o € X, or an initial probability measure o on X') under iterations
of F.

In practical situations (e.g. for computer simulations), we must restrict
the study to finite systems and consider, for A a finite subset of Z%, a map F)
which acts on Xy = MA.

This finite approximation is also useful for mathematical studies, even to derive
results for the infinite system.

More generally, the interest for the mathematical study of infinite systems
stems from the fact that the behavior of an infinite system is considered, as in
Statistical Mechanics, as a good approximation of the behavior of a large (but
finite) system. For example, it is well known that phase transitions, although
observable in laboratory, can only occur in the thermodynamic limit.

The local maps f; and the coupling G will be specified in each case. We
give some examples of the different choices that appear in the literature.
The most common choices for the local map f are:

e an expanding map of the circle f : S' — S' C'™® and such that there is
A > 1 with:
fllxy>Xx Vzest

This is the simplest example of a map with chaotic behavior, i.e. strong
dependence on the initial conditions.

Chaos is also characterized by the existence and uniqueness of an invari-
ant probability measure absolutely continuous with respect to Lebesgue
measure.

e an expanding map of the interval f : [0,1] — [0,1] such that there is an
open partition (;)1<i<z, of [0,1] with f C'*® and expanding on each I,
and £(I;) = (0,1).

This is the interval map equivalent to previous one on the circle. As-
sumptions can be weakened to preserve the same statistical properties.
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e a C? diffeomorphism with hyperbolic attractor f : M — M on a Riemani-
ann manifold M containing a set A compact, f-invariant, attracting (i.e.
there is a neighborhood U of A with f(U) C U and Nf™(U) = A) and
hyperbolic: for all z € A, the tangent space at z splits into the stable
subspace E* and the unstable subspace E¥, T,M = E*(x) ® E“(x), such
that there is A < 1 with:

IDf"|| < A"||v|| Vv e E*(z),n>0
|IDf~™| < A*||v|| Vve E*(x),n>0
This map satisfies also existence and uniqueness of an invariant probabil-
ity measure absolutely continuous with respect to Riemannian measure

along the unstable manifolds.
e a logistic map f : [—1,1] — [—1, 1] defined by:
f(z)=1—ax® (1.1)

with a € [0,2].

The interest of this map is that it presents lot of different asymptotic
regimes when the parameter o varies in the interval [0,2]. We briefly
describe this model, referring the reader to the main reference book [29]
or the recent review paper [101] for details.

The asymptotic behavior is described by the well known Feigenbaum
diagram (see for example in [30]), where large iterates of an arbitrary
initial point are drawn for various values of a.

For low parameters, there is an increasing sequence (ay)n>0, With ag = 0,
tending to a limit parameter a,, ~ 1.401... and such that for any a €
(@n,an+1) all orbits tend to a stable periodic orbit of period 2".

Above this parameter a,,, one can identify another sequence of a, de-
creasing and tending to as, with @y = 2. For a € (aw,dy,), one can
decompose the limit set in 2" strips through which every orbit goes pe-
riodically. Some periodic orbits appear also above ay, (with periods all
the integers which are not powers of 2).

Concerning chaoticity of the dynamics, different behaviors appear:

— on a completely disconnected set of parameters with null Lebesgue
measure, the attractor is a Cantor set, with an ergodic but non-
mixing invariant measure,
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— on a completely disconnected set C' of parameters with strictly pos-
itive Lebesgue measure, the attractor is an union of intervals,

— on asubset of C' with same measure, there exists a mixing absolutely
continuous invariant measure. This is for example the case for a =
2, where the invariant measure is in fact equivalent to Lebesgue
measure.

The most interesting feature of this model (for high values of the pa-
rameter a) is the coexistence of areas of chaoticity, with high rate of
dispersion (where the derivative of the logistic map is greater than one)
and of a strongly laminar area, around the degenerate point 0, where the
derivative vanishes.

The best criterion to ensure chaoticity is the Collet-Eckmann condition
(stated in [30]): there exist C' > 0 and A > 1 such that:

(F)' Q)] > CA\*  Vn>0

It states that the orbit of the critical point 0 is expanding, i.e. that any
orbit does not lose too much time in the laminar area.

The simplest choice for the coupling is G = G.:

(Ge@))i= (L =)o+ o > (1.2)
where the parameter ¢ measures the strength of the coupling (note that if
¢ = 0,then Gy = Id) and the sum is over the nearest neighbors of 7 on the
lattice.

This coupling is always used in physical literature. Mathematical results deal
with general classes of couplings, but one can keep this one (or a smooth
modification of it when one works on the circle) in mind for comprehension.

1.1.2 Globally coupled maps

In this model, we keep local maps, but the coupling does not depend on the
geometry of the lattice: the action of the coupling on a site depends in the
same way on all other sites.

In this sense, the state space of N sites can be taken as {1,..., N}.

We formalize this by defining our map on Xy = ML} by:
FN(.’L‘) = GN 9 F()

where:
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e Fy = ®Y,f; is the uncoupled product of local maps;

e the coupling G depends only on the value at site ¢ and the empirical
measure of all sites:

(Gn(z))e) = g(xi, Ry (z))

with Ry(z) = & Z;VZI 0z, € M'(X), the set of probability measures on

X,and g: X x M(X) = X.

We can then study the behavior of each finite dimensional dynamical sys-
tem (X, Fy), and the effect of making N tend to infinity, although we can
not define directly a corresponding infinite dimensional dynamical system.

The choice of local maps f; will generally be the same as for CML. Thanks to
the absence of spatial geometry, the analysis could get simpler, as in Statistical
Mechanics, where for example the Curie-Weiss model is simpler to study than
the Ising model, see [40].
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1.2 Physical and numerical results

The literature about numerical results for coupled map lattices is wide and
fast growing. Methods used to explain various behaviors are technical and
hard to handle. We can not go into too much details and keep only the
description of some significant observations. We refer the reader to the books
[61, 62] and to the special issues of Physica D [22] and Chaos [60] for details
on phenomenology, techniques and applications.

1.2.1 Phenomenologic study of locally coupled logistic maps

In his first papers on coupled map lattices [54, 55] (see also Chapter 3 of
[62] for a detailed exposition), Kaneko studied computer simulations of the
1-dimensional CML formed on a finite interval [— N, N] with the logistic maps
(1.1) and the coupling G = G, described in (1.2). This model depends on
both parameters a, the nonlinearity parameter, and ¢, the coupling strength.
Kaneko obtains in [56] a detailed phase diagram.

The simplest way to see the link between both parameters is to say that a high
nonlinearity parameter a tends to develop local chaotic behavior, as we saw
for the single map, whereas a strong coupling strength favors spatial coherence
between sites. These two effects compete to give the different behaviors of the
phase diagram, which we present in this Section.

Coherent patterns

When the nonlinearity parameter is below a.,, the periodic behavior of local
maps is preserved by the coupling, giving domains where all sites oscillate
periodically in phase. Between two such domains with same period 2%, there
appears a kink near unstable periodic points of period 2*~1.

After this cascade of doublings, the system exhibits chaotic behavior but
with a strong spatial structure organized in large domains on which sites are
strongly correlated. The motion is periodic on some of these domains and
chaotic on some others.

As nonlinearity is increased further, the large domains split into smaller
domains, with shorter periods. The chaotic domains seem to disappear in this
regime. According to Kaneko, there is no clear explanation for this suppression
of chaos.

For strong coupling (¢ > 0.45 according to Kaneko), the coherent structures
described in this part can be moving and create traveling waves.
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Spatiotemporal intermittency

The next feature appearing when nonlinearity a is increased is the spatiotem-
poral intermittency, in which any domain becomes unstable and each point
oscillates irregularly between ordered states (called laminar regions) and re-
gions with irregular motion (called burst regions).

Kaneko distinguishes between two types of spatiotemporal intermittency:
in a first type, which occurs for small coupling, there is no spontaneous creation
of burst areas. If a site and its neighbors are laminar, it remains laminar. This
kind of intermittency has been studied further, see Section 1.2.2.

Another kind of intermittency, with spontaneous creation of burst regions, can
occur for stronger coupling.

This occurrence of intermittency as a transition from regular structures to
chaotic behavior has been observed in many examples, from numerical sim-
ulations of coupled map lattices or partial differential equations to various
experiments.

Spatiotemporal chaos

For higher nonlinearity, any spatial structure disappears, giving fully developed
spatiotemporal chaos, i.e. a motion with fast decorrelation between sites and
in time.

Kaneko verified in [57] that the coupling destroys the windows of periodicity
that are observed for a single logistic map at some a > a,,. He detects this by
a computation of experimental entropy, which is increasing with a.

1.2.2 Spatiotemporal intermittency

To emphasize the appearance of intermittency, Chaté and Manneville propose
in [25] a new model of coupled map lattices with the same coupling G. (see
(1.2)) and with a simpler local map, for which the distinction between chaotic
and laminar areas is clear. For r > 2, f : [0,7/2] — [0,7/2] is defined by:

rT if0<z<1/2,
fle)=qr(l—2) if1/2<z<1,
x ifl <z <r/2

The dynamics of the single map is simple: Lebesgue-almost every orbit is
moving on the uniformly expanding (with expansion rate r) part [0,7/2] and
then trapped at one time in the laminar part [1,7/2] which is a complete
interval of fixed points.
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The same trivial behavior occurs for the coupled map lattices starting from
a constant initial condition or under small coupling.

Nevertheless, simulations reveal a threshold e, (depending on ) above

which spatiotemporal intermittency occurs. The sharp geometric structure
of this intermittency depends strongly on the value of r, but in any case,
laminar sites are spatially stable: a site can become chaotic only if some of its
neighbors are chaotic.
In the same paper, following graphical similarities, Chaté and Manneville in-
vestigate the link between this model and a directed percolation model with
adapted transition probabilities. However the calculation of characteristic ex-
ponents shows that the two models do not behave in the same way.

The model of Chaté and Manneville was further investigated by Grass-
berger and Schreiber in [44], in which it was shown that this model of coupled
map lattices is in fact in the same universality class as directed percolation.
To see it, one has to change the time scale in order to avoid the creation of
spatial correlation, incompatible with percolation.

See also the PhD Thesis of Chaté [21] for more details.

1.2.3 Non-trivial collective behavior

Chaté and Manneville have emphasized in [26] another interesting feature of
coupled map lattices: the non-trivial collective behavior. We give here a simple
description of this phenomenon, and refer to [23, 75, 28] for studies with various
methods.

We work in dimension 1 with the coupling (1.2) and a local logistic map
with parameter a € (a9, a1) (see definitions in Section 1.1.1). In this case, the
orbit of any initial point oscillates periodically between two strips I, and I;.
We denote for 7 € {0,1} by p; the asymptotic distribution on each strip I;
(pi = lim % Z;‘F:_Ol df2(g) for Lebesgue-almost all € I;) and explain how this
periodic behavior is modified by the coupling.

1) For the uncoupled map formed by such logistic maps, each site evolves
independently of the others, hence for N large the instantaneous empirical
mean given by:
1 N
= 8 ft (s, "([=1,1

-N

is asymptotically a mixture of the limiting measures on each of the two strips:

e~ cpo+ (1 —¢)pr
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with ¢;41 = 1 — ¢; and c9; = ¢p, because of the periodicity. The proportions of
points in each strip are preserved (while exchanged) by the dynamics. In spite
of local chaoticity, a global periodic behavior is preserved in time at this scale.
For small coupling, the behavior remains the same.

2) On the other hand, when there is a strong coupling, a synchronization effect
appears. If we denote again:

pe~ cpo + (1 — c)pr

with p; concentrated on I;, the system selects in this case a pure state in the
sense that cg (or cg441, depending on the initial conditions) tends to 1 as ¢
tends to infinity.

Asymptotically, all points of the system are together in the same strip. This
spatial synchronization coexists with local chaos in time.

In the already cited papers, strategies are developed to explain such emer-
gence of collective behavior from chaos when the coupling strength increases,
through collective bifurcation and increase of spatial correlation.

In [24], Chaté and Losson relate this non-trivial collective behavior to the
asymptotic behavior of a transfer operator associated to the dynamics.

1.2.4 Globally coupled maps

Kaneko studied in [58] (see the presentation in Chapter 4 of [62]) the glob-
ally coupled version of previous model with local logistic maps. On Xy =
[—1,1]1»N} the coupling is defined by

Gn(z) = (1 —&)z; + (¢/N) ij

The competition between chaos induced by the nonlinearity parameter a and
order imposed by the coupling gives rise to various behaviors (see [62] for the
complete phase diagram):

e Coherent state with complete synchronization: when the coupling is strong,
all sites take asymptotically the same value and follow a motion governed
by a single logistic map.

e Completely desynchronized state: when the coupling is small, the system
preserves the behavior of null coupling, where all sites take different
values and evolve without synchronization.
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e Ordered state: in an intermediary regime, there appear clusters, i.e. sets
of sites taking the same values. The evolution is then governed by mean
field equations defining interactions between clusters. If one has K clus-
ters with sizes (Ng)i<k<x and z} denotes the value of a site of the k™
cluster at time t, evolution follows:

thy = (1= () + 0 N fd)

Kaneko makes a distinction between ordered states, with only few large
clusters, and partially ordered states, with a greater number of clusters.

This appearance of clusters where motion is synchronized is experimentally
observed to be independent of the size of the system V.

Kaneko has then developed many tools to study these behaviors. He intro-
duced in particular a split exponent which measures the asymptotic splitting
rate between two sites:

)\split(i) =T11_I>1go % log (f_[(l - 5)fl($n(z)))

=log(l—¢€)+ Ao

where ) is the Lyapunov exponent of the single logistic map. A simple crite-
rion to get complete synchronization is then A < 0, which gives an explicit
condition on the coupling strength .

A generalization of this simple derivation would allow to study occurrence and
stability of clusters.

For the case of completely desynchronized state, one could hope that dif-
ferent sites behave independently from each other when the size of the system
tends to infinity.

However, experiments [59] show that this is not always the case: Kaneko calls
it “violation of the law of large numbers”, although it is more a defect in the
fluctuations: it remains asymptotically some correlation between sites, which
contradicts the intuition of propagation of chaos in this mean field setup.
Shibata and Kaneko give recently [96, 97] some explanations of this phe-
nomenon via hidden coherence, which is another appearance of collective be-
havior in this kind of system.
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1.3 Mathematical results

1.3.1 Spatiotemporal viewpoint

The first mathematical result on coupled map lattices has been established
by Bunimovich and Sinai in [19, 20]. They wanted to give a mathematical
formulation of spatiotemporal chaos and used for this analogy with statistical
mechanics for a model with weak coupling and local maps which are simpler
than the coupled logistic maps.

For them, spatiotemporal chaos is characterized by the existence of a mixing
invariant measure with finite box marginals absolutely continuous with respect
to Lebesgue measure.

It is important to notice that they construct this measure for a 1-dimensional
coupled map using a Gibbs measure on a shift space with 2 dimensions, one
corresponding to space, the other to time. This approach makes no essential
difference between temporal dynamics and spatial shifts.

They study a CML on X = [0,1]% and take for local map an expanding
map of the interval f : [0,1] — [0, 1] such that there exists an open partition
(I)o<i<z—1 of I =1[0,1] with U, = [0,1], f(f;) = (0,1) and f C*** on each I
with f/ > A > 1.

They choose small couplings of the form:

o(z;)

(G (@) = (1 — afz))zi + —

(Tic1 + Tig1)
with « € C%([0,1]) such that:

e foro<y<1-96§
=a(l)=0
(15i) o'(y) >0 for0<y<d andod(y)<0 for1—-0<y<1

They get then:

Theorem 1.3.1. Fore small enough, there exists a probability measure pu such
that:

1. p 1s invariant under F' = G o Fy and the spatial shift S;

2. The marginals of p on any finite subspace are absolutely continuous to
Lebesgue measure;
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3. The dynamical system (X, u, (F,S)) is mizing:

/gpoFtOS"-ﬂ)d,u—)/gOd/J,/’lﬁd,u
x x x

when t or |n| tends to infinity.

It is well known (see for example [64]) that for expanding maps like f, one can
construct a coding 7 : {0,...,L — 1} — [0,1] by:

71-(UJ) = n I_wo,w1...,wn with ]wo,w1...,wn = ]wo N f711w1 N---N f*ann

n>0

It defines a semiconjugacy between the shift o on {0,..., L — 1} (defined by
(ow)i = wiy1) and f:
moo=form

This coding has been used to construct interesting invariant measures for f,
using the powerful theory of Gibbs measures constructed on shift spaces (see
for references [11, 93]).

Indeed, the image by 7 of the Gibbs measure associated to the potential p(w) =
—log f'(m(w)) is known to be the unique mixing measure absolutely continuous
with respect to Lebesgue measure. It is commonly called the SRB (Sinai-
Ruelle-Bowen) measure.

Bunimovich and Sinai have defined the coupling G in an adequate manner

to preserve the partitions described above. They use then these partitions to
construct the limits of conditional probabilities of the measure p, when spatial
size and time tend to infinity.
These conditional probabilities give the adequate potential to define an as-
sociated Gibbs measure on Q = {0,...,L — 1}™Z_ Bunimovich and Sinai
invoke then results of Dobrushin and Martirosian [35] to conclude' that the
Gibbs measure is unique and mixing, hence its image by the coupling remains
mixing.

This elaboration of a thermodynamic formalism, at least on the coding
space, makes the authors of this seminal paper hope that the experimented
appearance of coherent structures could be linked to the occurrence of phase
transitions, i.e. cases with at least two Gibbs measures associated to the
conditional probabilities (see Section 1.3.4 for advances on this idea).

1 The assumptions of Dobrushin and Martirosian were in fact not satisfied by this system,
for proofs of the uniqueness and mixing of these Gibbs systems, see [13, 14, 52].
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This work has been soon generalized to the case of local uniformly hyper-
bolic maps by Pesin and Sinai [86].
They consider on a Riemannian manifold M a C?-diffeomorphism f possessing
an attractor A (i.e., a set A invariant and compact with a neighborhood U

such that f(U) C U and A = Nf™(U)) which is hyperbolic: for all € A, the
tangent space at x splits into T, M = E*(z) & E*(x), with:

|Df"ol| < A*[v]| Vv € E*(z),n>0
|IDf ™| < A*||v|| Vve E“x),n>0

for A < 1. E* is the stable subspace, E* the unstable subspace.

They study 1-dimensional coupled maps associated to this local hyperbolic
map with short range couplings, i.e. couplings for which strength of coupling
between two sites decreases exponentially fast with the distance between these
sites.

They obtain existence of a mixing invariant measure, which is locally absolutely
continuous to Riemann measure along the unstable manifolds (which is the
characterization of the SRB measure in this setup).

Since a hyperbolic map admits also a coding constructed on the so called
Markov partitions (see Chapter 18 of [64]), Pesin and Sinai proceed by an
adaptation to this setup of the strategy from [19].

The main difference is however that they use an abstract argument of struc-
tural stability to show that the coding obtained for the uncoupled map by
tensorisation is preserved under small coupling.

The last improvements of this method have been given by Jiang and Pesin
[63, 48, 49]. They study the same model as Pesin and Sinai previously: uni-
formly hyperbolic local maps with short range interactions. The method fol-
lows essentially the same lines.

However, they emphasize on the natural link between this analysis and the
thermodynamic formalism which is directly defined for the coupled map and
the spatial shifts. They identify explicitly the potential:

o(z) = —logdet D" f(xg) + ()

(see Section 3.2.2 for a complete derivation of this potential in a slightly differ-
ent setup) associated to the spatiotemporal dynamics under Riemann measure,
and show that the measure obtained by Pesin and Sinai is also the unique mea-
sure realizing the maximum in Gibbs variational principle:

Pirsy(p) = sup ) (h(F,S)(V) +/ 90d7/>
X

vemM! (x

inv
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It is called the unique equilibrium measure associated to potential ¢ and dy-
namics (F, S), see Section 3.8 for details.

They state hence explicitly uniqueness of the limit measure, among the mea-
sures which are invariant under F' and spatial shifts. This is another charac-
terization of spatiotemporal chaos.

They had also to rework the arguments giving uniqueness of the Gibbs
measure, because their potential did not satisfy assumptions of the classical
results. These generalizations were done in [52], see also [13, 14].

These results, and in particular their expression in the setup of thermody-
namic formalism, have allowed further developments: Jiang proves [50] that
the topological pressure of the potential ¢ is null. Dolgopyat [36] adopts the
same viewpoint to analyze Lyapunov exponents associated to the system and
prove the equivalent of Pesin formula, identifying entropy with the sum of
positive Lyapunov exponents.

Jiang wrote also in [51] an adaptation of the proof of [53] to the setup of
expanding maps of the circle.

1.3.2 Transfer operator approach

Another important tool associated to a regular expanding map f of the in-
terval I = [0,1] (or of the circle) is the transfer operator, acting on densities
of measures as the dual of the composition by f: denoting m the Lebesgue
measure, the transfer operator £; is defined on L'(m) by either of the two
equivalent definitions:

/gpof-d}dm:/go-ﬁfwdm Yo € L®(m), ¢ € L'(m)
I I

_ o(y)
Erel@) = 2 Ty

The interest of this transfer operator is that 4 = hm is an invariant measure if
and only if L¢h = h, and asymptotic properties of u are linked with spectral
properties of Ly.

A whole domain of modern ergodic theory consists in the study of these transfer
operators, for which the hardest work is to find a good space on which they
act and enjoy nice spectral properties. We refer the reader to the exhaustive
presentation of this subject in [3].
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The first attempt to use transfer operators for coupled map lattices is due
to Keller and Kiintzle [68, 65].
They construct adapted transfer operators on Banach spaces of functions with
bounded variations for the case of a local map f expanding with same kind of
conditions than in [19] and a coupling G.(z) = = + A.(z) where the C* norm
of A, is controlled by € (the strength of the coupling).

They get in the finite lattice case, i.e. with X = [0, 1]V, the existence of an
absolutely continuous invariant measure for € small enough, and uniqueness
for ¢ smaller (¢ < ). They notice that the limit parameter ¢y tends to 0 as
N tends to infinity.

Indeed, for the infinite lattice case X = [0, 1]%, they obtain only existence of
a measure invariant by the coupled map and the spatial shift, with absolutely
continuous marginals on finite sub-lattices.

In the finite lattice case, they define, with X the boudary of X = [0, 1]V
seen as a subset of RV :

T={Y € CH(X) : Ylyp =0, [9] <1}

BV(X) = {p € L'(X) : var(p) < oo}  with |[¢|lsv = |||l + var(p)

A weak formulation of the definition of bounded variation functions is necessary
in this multidimensional setting.

They prove that the transfer operator L associated with the finite lattice
coupled map preserves the Banach space BV(X') and enjoys on it nice spectral
properties: in fact, they can use in this case, as for a single map, compactness
arguments and the Theorem of Ionescu Tulcea-Marinescu. They can deduce
the existence and uniqueness of invariant measure from this strong spectral
result.

For the infinite lattice case, they manage to construct a transfer operator
associated to F' acting on a generalized BV space: they consider extended
densities ¢ = (pyv)yer, where F is the set of finite subsets of Z and ¢y €
L'([0,1]"), then define:

var(p) = sup(var(py) : V € F)
BV = {¢ = (¢v)ver : var(p) < oo}
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They get for this transfer operator weaker spectral properties, hence derive
only the existence of the measure.

The only other result in this setup is the recent paper [69] where Keller and
Zweimiiller manage to establish uniqueness of the invariant absolutely contin-
uous measure satisfying mixing conditions. They use for this really different
methods and have to assume that the coupling is unidirectional. This is a
strong assumption, which gives models also studied by physicists (see Section
3.5 in [62)).

All other works on transfer operators for coupled map lattices are done
under stronger assumptions on the local maps and the coupling, requiring to
work in a holomorphic context.

This approach has been initiated by Bricmont and Kupiainen in [12]. They
work with a local map f expanding on the circle and holomorphic in a small
ring around it and a coupling G with same regularity and with exponential
decay of the coupling with the distance between sites.

They get hence:
Theorem 1.3.2. There exists a probability measure p on X such that:

1. p is invariant under F' and spatial shifts S. For any finite A, p|, is
absolutely continuous with respect to Lebesgue measure.

2. u is spatiotemporally mizing, there exist o > 0 and ¢ < oo such that

/woFtoS%du—/Wd#/#fd“‘S6_“(”"")66A'IIFIIIIGII
X X X

for F and G depending on the finite box A and holomorphic in a neigh-
borhood of (S*)A.

3. F"m tends weakly to p as n tends to infinity, with m the product of
Lebesgue measures. p 1s unique among the class of measures locally ab-
solutely continuous with respect to Lebesque measure with locally holo-
morphic densities.

They use to prove this stronger properties of the finite lattice transfer op-
erators on the space of real analytic densities: the uncoupled transfer operator
is compact with 1 as simple maximal eigenvalue and the transfer operator of
the coupling can be analyzed by complex analysis.
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They obtain sharp estimates on the spectral gap of the coupled transfer oper-
ator by cluster expansions estimates. The main point is that these estimates
are uniform in the size of the lattice, hence the results are preserved when the
size of the system tends to infinity.

These authors have established other results on this subject [13, 14], where
they generalize this viewpoint and make the link between the transfer oper-
ator approach and the work on coding space. They clarify in particular the
arguments needed for uniqueness of the Gibbs measure.

Baladi et al develop this analysis in [4] to construct a transfer operator
associated to the dynamics on the infinite lattice: they define in the same
context as previous paper a Fréchet space (in the general case) and a Banach
space (in dimension 1) on which a transfer operator acts. In the unidimensional
case, cluster expansions techniques allow them to present the transfer operator
associated to the coupled dynamics as a perturbation of the one associated to
the uncoupled map.

They deduce from this and spectral analysis a localization of the coupled spec-
trum. This gives again spectral gap, hence existence and uniqueness among a
subspace of invariant mixing locally absolutely continuous measure, and fur-
thermore a description of the spectrum under this gap. However the study of
this spectrum is limited by the absence of spatial homogeneity of the Banach
space.

The next step in this study is due to Maes and Van Moffaert [78]. They
study stochastic stability of the measure obtained in [12], and simplify in the
course of the proof the cluster expansion argument.

This simplification is used by Fischer and Rugh in [41] (again in the context
of holomorphic expanding maps of the circle), and associated to a new kernel
representation of the transfer operator on a finite lattice to define in a simpler
way a global transfer operator.

It acts on the Banach space Hy (for § < 1 well chosen) of families ¢ = (pa)rer
(F is the set of finite subsets of Z%) such that:

b (pA1:/ ) IQOAzdm
(SI)A \A

o |ol, = igﬁ‘A'llcpAH < o0

ANAY T when Ay C Ay

It means that one allows an exponential increase of the norm of the marginals
with the size of the box.
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This defines exactly the good Banach space to prove a spectral gap for some
iterate of the transfer operator acting on Hy, for # and a coupling strength
small enough.

They deduce from this spectral gap existence and uniqueness among Hy of
an invariant measure with mixing properties.

Rugh gives more recently in [95] a simplified and generalized version of
these results. In particular, he simplifies again the combinatorics and allows
for the choice of couplings which decrease less than exponentially fast.

We do not emphasize these last results here, referring the reader to Chapter 4,
where this method in exposed in details and used to get new limit theorems.
We just remark that this last improvement allows also a study in more details
of the spectrum under the spectral gap. This has been done in [5].

1.3.3 Globally coupled maps

We mention briefly the few results existing in the rigorous study of globally
coupled maps. Jarvenpédd adapts in [47] the method of Bricmont and Kupi-
ainen to prove existence of a mixing measure for each finite size system and
weak convergence of these measures to a product measure as the size of the
associated system tends to infinity.

Keller provides in [67] a general mathematical framework to study such
models, using in particular the theory of exchangeable distributions to give a
precise sense to what Kaneko calls “violation of the law of large numbers”.
He proves that this phenomenon does not occur for C? expanding maps of the
circle nor mixing tent maps with small couplings.

1.3.4 Phase transitions

Most articles on phase transition (see for instance [80, 9]) deal with numerical
studies of such phenomena.

For a mathematical study, even the definition is not clear. If all authors
agree on the fact that it must be linked to non-uniqueness of some specified
invariant measures, the way to characterize these measures is in discussion.

For some of them [17, 18, 7, 8|, the interesting measures are natural mea-
sures: for a dynamical system (X, F') with reference measure m, a measure p is
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a natural measure if there exists an open subset U C X (the basin of attraction
of p) such that for any measure v € M!(X) with support in U and locally
absolutely continuous with respect to m, we have:

H
[y

1

T (F)'v — p
t

Il
)

They construct some examples presenting non-uniqueness of natural measure,
where this non-uniqueness is induced by some strong topological bifurcation,
as two fixed points made stable by the coupling.

The strange fact in this definition is that it can be satisfied by finite systems,
and even a simple map as:

-2-2z if-1<zx<-1/2
f(z) =< 2x if —1/2<x<1/2
2 —2x if1/2<zx<1

This is the reason why Gielis and MacKay [43] require for their study of
phase transitions that the coupled map is indecomposable, which is a spa-
tiotemporal specification property (extension of Definition 2.3.2).

In this setup, and assuming also that the coupled map admits a symbolic
coding as described is Section 1.3.1, they say that phase transition occurs
when there is more than one Gibbs measure for a convenient potential on the
coding space.

They give an example: starting from a coding space with such a situation, they
manage to construct the associated coupled map. This example has not the
standard form of the composition of a coupling and a product of local maps,
since the values at neighboring sites directly modify the local map.

The objection that can be done to this viewpoint is that it is more re-
strictive, asking for indecomposability and symbolic coding. For the second
restriction, the authors invoke the use of thermodynamic formalism directly
on the space. It could allow to call a phase transition a situation with several
equilibrium measures associated to a given potential.

More generally, it seems to be unclear if one can hope to get interesting strong
coupling cases which preserve global properties of the system as indecompos-
ability or existence of an appropriate potential.
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2. LARGE DEVIATIONS PRINCIPLES FOR DYNAMICAL
SYSTEMS

We present in this Chapter some of the existing large deviations results for the
temporal asymptotic study of finite dimensional dynamical systems.

Our presentation is inspired of lectures given by Gérard Ben Arous at the
Winter School on Ergodic Theory, organized at Sils-Maria (Switzerland) in
January 1999 by Viviane Baladi and Carlangelo Liverani.

As in these lectures, we have chosen to start with a short presentation of the
large deviations formalism and some classical results in probability theory. It
gives an introduction to main methods for proving large deviations principles,
and these methods have been adapted to the setting of dynamical systems.
For a more complete overview of the field of large deviations, see [34, 32].

The readers which are familiar with the basics of large deviations can skip this
part and go directly to Section 2.3, where results for dynamical systems are
presented.

As large deviations principles are natural results for Gibbs measures in sta-
tistical mechanics, the equivalent results for dynamical systems will be strongly
related to the thermodynamic formalism, which is presented in Section 2.3.1.

2.1 Introduction to large deviations formalism

2.1.1 'The example : Cramer’s Theorem

As a first (and fundamental) example, we consider a sequence (X;);>o of in-
dependent and identically distributed (i.i.d.) random variables in R with law
i € M;(R) and the empirical mean of these variables :

We know by classical results of probability theory that :

e Law of Large Numbers: If z = EX| exists, M,, — Z almost everywhere;
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e Central Limit Theorem: If in addition 02 = E(X; — Z)? < oo, then:

M — N(0,1)

o

in law.

These two results give the asymptotic behavior of the empirical mean and small
fluctuations (of the order of —=) around this limit. With Large Deviations
techniques, we want to estimate the speed of convergence to 0 of probabilities
of greater fluctuations around the mean: events of the type of {M,, —Z > a}
with a > 0. For this we note

A(X) = logE(e*)  the logarithmic moment generating function,
Dy ={):A()\) < oo} its domain,
A*(z) =sup (Az — A()X))  its Legendre transform.
AeR
We have then, without any assumption on the function A, the following:
Theorem 2.1.1 (Cramer-Chernoff).
1. For any F C R closed, limsup,,_,, = logP (M, € F) < —infyep A*(z)
2. For any G C R open, liminf, o 21ogP (M, € G) > —inf,eq A*(2)

3. A* : R — [0, 00] is a convez lower semi-continuous function and satisfies

infyer A*(x) = 0. When T = EX; exists, then A*(Z) = 0.

4. If 0 € Dy, the level sets {x : A*(z) < ¢} are compact. If Dy = R, then
]im|w|_>oo %(‘x) = OQ.

Ezamples :

xlog(%)—i—(l—x)log(%) ifo<z<i1

If X; ~ Bernoulli(p), A*(z) = P
00 otherwise
N 9 x?
It X; ~ N(0,0%), A*(z) = ——
(0,0%) (x) 552

Proof. We give the main steps of the proof of this first simple result (referring
the reader to Th. 2.2.3 of [32] for the details) because the main tools that are
used in Large Deviations techniques already appear in it: the Upper Bound
relies on a well optimized exponential Chebyshev inequality, the Lower Bound
on a change of measure argument.

Upper bound:
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We treat the case where T exists and is finite. For F' = [z,00) with Z < z
(otherwise inf,cp A*(z) = 0 and there is nothing to prove), we get by the
Chebyshev inequality for all A > 0:

P(M, € F) = ]P’(SXi > nx)
<E <6/\Z?=_01 X”) ™™ = exp [-n Az — A(N))]

It is easy to verify that in this case the supremum of (Ax — A(A)) is realized
for a positive A, hence:

P (M, € F) < exp(—nA*(z))

In the same way, when z < Z, P (M,, € (—o0,z]) < exp(—nA*(z)).

For a general closed set F' such that inf,cp A*(z) > 0, then Z ¢ F. In the
simpler case, we have F' C (—o00,a] U [b, 00) with a < Z < b, hence:

P (M, € F) < exp(—nA*(a)) + exp(—nA*(b)) < 2exp <—n inf A*(x))

zeF

which gives the upper bound (and in fact an estimate available for all n). We
can treat other cases in the same way.

Lower bound :
The lower bound is a local property. We need only to show that for all z € R
and 0 > 0:

1
liminf —logP (M, € (x — 6,2 +0)) > —A*(z)

n—oo N

and by change of variable, it is sufficient to prove it for x = 0:

liminf = log P (M, € (=3,4)) > —A*(0) = inf A(z)

n—oo n T€R
We will assume that p has compact support, u(—o00,0) > 0 and u(0,00) >
0 (all other cases can be treated by approximation). Then A is finite and
differentiable everywhere, and there exists 1 such that A(n) = inf,cg A(z)
characterized by A’'(n) = 0.
We proceed then to a change of measure to define a new probability measure
i by:
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and ()N(Z-)izo i.i.d. random variables with law ji. We denote M,, their empirical
mean and get for € > 0:

P(|M,| <e)= / wE™(dzg, - - ., dT,_1)

| ?:_01“|<n5
> e—ns\?ﬂ / en(z?;()l :cz) ,u,®”(d$0, ceey dacn_1)
| l."=01 wi|<n6
> exp(—neln| +nA(n)) P(|M,| < ¢)

We have just adapted the change of measures to get:
EX, = / 2™ A y(dx) = A'(n) =0
R
hence lim,_,o P(|M,| < ) = 1 by the law of large numbers. This gives:

1
liminf — log P (| M,,| < &) > A(n) — €|n Vo<e<d

n—oo 1

> inf A(z) = —A*(0) making € = 0

zER

2.1.2 Basic definitions of large deviations

Let X be a topological space and B its Borel o-algebra. Consider (uy,)n>0 a
family of probability measures on (X, B).

Definition 2.1.1. I : X — [0,00] is a rate function if it is lower semi-
continuous, i.e. its level sets {x € X : I(x) < a} are closed for all o € R.
I is a good rate function if the level sets are compact.

Definition 2.1.2. (u,) satisfies a Large Deviations Principle (LDP) with rate
function I if:

1
Upper Bound : lim sup — log p,(F) < — inf I(x) YV closed F C X

n—oo 1 zeF
1
Lower Bound : lim inf —log u,,(O) > — in(f) I(z) V open O C X
n—oo 1 T€

Ezxamples : The Cramer Theorem is a Large Deviations Principle with convex
rate function I = A*. The simplest example to keep in mind is du,(z) =
Z e @)dx. In this case the rate function appears naturally as the density

of iy.
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Remarks : 1. If X is a regular space (i.e. for all closed F' and = ¢ F, there
exist open sets G, Gy such that z € G1, F C Gy, and G; N Gy = () then a
family (u,) can have at most one rate function satisfying a Large Deviations
Principle.

2. A Large Deviations result implies both measurable and topological struc-
tures, and depends heavily on this topology: the finer this one is, the stronger
the Large Deviations result. The difficulty will often be to find the good
topology: rough enough to make the Large Deviations Principle hold and fine
enough to give a consistent result.

In a general setup, we have often to prove a Large Deviations Principle
in two steps, proving first a weak version of it, then exponential tightness of
the sequence of measures (a type of compactness property). We may already
notice that weak and full Large Deviations Principles are equivalent if the space
X is compact, which will generally be the case in the context of Dynamical
Systems. We give however below the detailed Definitions and links between
both properties.

Definition 2.1.3. (un)n>0 satisfies a weak Large Deviations Principle (WLDP)
with rate function I if :

e Upper bound is valid for any compact F',
e Lower bound is valid for any open G.

Definition 2.1.4. (u,) is exponentially tight if for every L > 0, there exists
K(L) compact such that :

1
lim sup — log pu, (K (L)) < —L
n

n—o0

Proposition 2.1.1. If (u,) is exponentially tight then :
1. Upper Bound for all compact F = Upper Bound for all closed F;
2. Lower Bound = I is a good rate function,
3. WLDP = LDP with a good rate function.

Reciprocally, if (un) satisfies a Large Deviations Principle with a good rate
function on X Polish, then (i) is exponentially tight.
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2.1.3 Transformations of large deviations principles

We give two useful ways to derive new Large Deviations Principle from known
ones. We give the simplest assumptions, although more general results exist,
and can be found for example in Chapter 4 of [32].

Proposition 2.1.2 (Contraction Principle). If (i,)n>0 satisfies a Large
Dewviations Principle with good rate function I on X and ® : X — Y is con-
tinuous, then v, = pu, o ®! satisfies a Large Deviations Principle on' Y with
good rate function :

J(y) =inf{I(z) : z € X s.t. D(z) =y}

Proposition 2.1.3 (Laplace-Varadhan Lemma). Let F' be bounded and
continuous on X and (,)n>0 satisfy a Large Deviations Principle with good
rate function I. Define v, = Z, ‘e "Fdp, with Z, = [, e "Fdp,. Then:

1 .
Jim - log Z,, = — gg)f((F(ac) + I(x))
In addition, (v,)n>0 satisfies a Large Deviations Principle with good rate func-
tion :

J(z) = F(z) + I(z) — inf (F(z) + I(x))

reX

This result is of great interest. If you manage to obtain a Large Deviations
Principle for i.i.d. random variables on R (what Cramer Theorem gives), you
get it when adding a potential e "F: this gives you directly Large Deviations
Principle for Gibbs measures, and much more if the rate function behaves well.

2.1.4 Strategies to obtain Large Deviation Principles

As we said, there is no recipe available for all situations. We can however
present the two main ways of getting Large Deviations results. A third one,
relatively different will occur more specifically for Dynamical Systems (see
Subsection 2.3.3 or Chapter 3).

WLDP from abstract nonsense and sub-additivity

Let (n)n>0 a sequence of probability measures on X. Choosing A a basis for
the topology of X', we denote for A € A, x € X:
1
L(A) = —liminf —logpy(A)  IL(z) = sup L(A)
n—oo 1 z€A,AEA

— 1 — —
L(A) = —limsup — log u,, (A) I(x)= sup L(A)
n—oo T T€A,AcA
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Theorem 2.1.2. If A is such that I(x) = I(z) Vz € X, then (u,) satisfies a
WLDP with rate function I =1 =1.

In particular:

Corollary 2.1.1. If lim,_,o = log pn(A) exists for all A € A, (un) satisfies a

WLDP with rate function I.

Moreover, if X is a topological vector space and:

A+ B 1
: ) > 1 (L(4) +L(B)) VA,Be A

) 1
lim sup — log p,, (
n

n—o0
then I is conver.

We will usually take for A the set of open convex subsets of X', and use a
subadditivity argument to get the limit of £ logu,(A4). The main interest of
this method is that it can be applied to some non convex setup, i.e. with a
non convex rate function. Its main limit is that it does not say much about
the rate function, obtained only in an abstract sense.

WLDP from Cramer’s idea: Gartner-FEllis theorem

Assume X is a Hausdorff topological vector space and (Z,,) are random vari-
ables taking values in X with laws (py,).
We may define in this context the logarithmic moment generating function :

A, (A) =logE (eO"Z")) = log/Xe<’\’””> pn(dz) Ve X*

and will suppose :

1 —
lim —A, (nA) = A(\) existsinR Ve X™ (%)

n—o0 M

Theorem 2.1.3. Under (x):

1. A is convex and its Legendre transform

A*(z) = sup ((A, z) — A(N))

AEX*
1S a conver rate function.

2. The LD Upper Bound is satisfied for every compact sets with rate function
A*.
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3. If (vn) satisfies a Large Deviations Principle with good rate function I
and A(X) is finite for every A € X*, then A(A\) = sup (A, z) — I(2))
and A* is the affine regularization of I (i.e. A* < I and for all convex
rate function f < I, then f < A*)

In particular, if I is conver, A* = 1.

Remarks : 1. The two first points in the theorem remain true if we take the
limsup instead of the limit in the definition of A given in %. It gives a really
general upper bound for compact sets.

2. We cannot have the lower bound in the same generality, in particular
because this method relies on convexity properties, hence systematically gives
a convex rate function. It may happen that this is not the good one to describe
the real behavior of the process. We need an additional assumption to ensure
we are (at least locally) in a convex setting: this gives Gartner-Ellis theorem,
stated below.

Definition 2.1.5. x € X is an exposed point for A* if there exists A € X*,
exposing hyperplane for A and x, such that:

Nz)—A(z) > (N\2)—A(2) Vz#uz

We denote F the set of exposed points of A* with an exposing hyperplane X for
which there ezists v > 1 such that A(y\) < oo.

Theorem 2.1.4 (Gértner-Ellis-Baldi). Let (1,)n>0 be exponentially tight
and verifying (%), then:

1
For any closed set F C X limsup — log u,(F) < — inf A*(z)
n

n—00 zeF

1
F t GCAX liminf—1 G)>— inf A*
or any open se C iminf ~log pn(G) > ,of (x)
Corollary 2.1.2. On X a Hausdorff locally convex topological vector space,
let (pn)n>0 exponentially tight and satisfying (x). If A is finite and Gateauz-
differentiable everywhere, then (pi,)n>0 satisfies a Large Deviations Principle
with the convex good rate function A*.
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2.2 Some large deviation principles

We present in this Section different types (called levels) of Large Deviations
results for i.i.d. random variables and Markov chains. We may apply in these
cases the methods we have seen in previous Section, to obtain in some partic-
ular cases WLDP’s and exponential tightness.

2.2.1 Level 1 large deviations

We have already seen the Cramer Theorem, for variables taking value in R.
This result can be generalized to a wider setup:

Theorem 2.2.1. If (X;) are i.i.d.r.v. with values in a separable Banach space
X, the law of the empirical mean M, = %2?2—01 X, satisfies a WLDP with the
convex rate function :

AEX*

A*(z) = sup ({\,z) — A(X)) where A(N) = log/X e p(dz)

If in addition [, ell?ll u(dz) < oo for all t, the law of M, satisfies the Large
Deviations Principle with good rate function A*.

First part of this Theorem is obtained by subadditivity for open convex sets
and then identification of the rate function with A* by convexity (see theorem
2.1.3 and remarks after).

Second part is obtained by Gértner-Ellis Theorem. In the case where X = R?

it is enough to suppose 0 € D, to obtain the complete Large Deviations
Principle.

2.2.2 Level 2 large deviations

We would like to get more general results for processes like 1/n )" f(X;) with
any observable f. We will in fact state more abstract results for the empirical
measure associated to the process (X;);>o, defined as:

1 n—1

and considered as a random variable with value in M;(X). Then:

Theorem 2.2.2 (Sanov). For (X;) i.i.d.r.v. with values in X a Polish space,
the laws of L,, satisfy a Large Deviations Principle with good convex rate func-
tion:
. _ dV .
Hvlp) = {fxflogfd,u if f =4 esists,
00

otherwise.
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We call H(-|p) the relative entropy w.r.t. u, or the Kullback-Leibler informa-
tion.

This Theorem is in fact a particular case of the previous Cramer Theorem
applied to the sequence of i.i.d. random variables (dx,). We get hence an
alternative expression of the relative entropy by the variational expression:

HO = s () ~1og [ o/ uia)

VeCy(X

By the contraction principle (Proposition 2.1.2), this result contains all Large
Deviations results of level 1 for empirical means 1/n Y f(X;), with f bounded
and continuous.

These first results have already many applications, in particular to study mean-
field models in statistical mechanics and the feature of propagation of chaos,
see for example [6] for recent developments.

The case of Markov chains

Many results have also been developed to generalize such Large Deviations
Principles to the class of Markov Chains (or Markov Processes) and more
generally to mixing stationary processes. It is an important step to dynamical
systems, since Markov chains can be seen as (the simplest) dynamical systems.
We define (X,,) a Markov chain on a Polish space X' by its transition kernel
m(x,dy) = P(X; € dy| Xy = z), describing the probability of a transition from
x to y. We define then P, as the law of the chain starting from the point z:

]Pac((XmaXn) € AOX"'XAn) :/ / ﬂ-(-Tn—ladxn)"'W(xadxl)éAo(x)
A Ap

and P, = [ P, pu(dz) the law of the chain starting with initial measure .

We want in this context again LD results for the associated empirical mea-
sure

Ly =) _dx, € My(X)
=1

The situation gives more choice : we may want results under P,, 1 being the
invariant measure of the chain, or under P,. Under P, we must also specify if
we want pointwise or uniform results. There are hence many different results
under various assumptions. We will present only some of them. More details
can be found in the reference books [32] and [34].
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A first result has been obtained under a strong uniformity condition on the
generalized transition probabilities 7! (z, dy) = P,(X; € dy) We call it the (U)
hypothesis:

(U) There exists | < N integers and M > 1 such that:

M
l m
w(x,dz)<—N Elﬂ' (y,dz) Vz,ye X

Theorem 2.2.3. If the Markov Chain (X,,) satisfies Assumption (U) then:

o There exists a unique tnvariant measure (.

The limit A(V) = lim,, % logE, (62?;01 VW)) exists for allV € Cy(X).

o A*(v) = supyec,x)((Vsv) — A(V)) is a good convez rate function.

The Large Deviations Principle is satisfied uniformly in x :

1
— inf A*(v) < liminf — log 12){} P.(L, € A)

° —
veEA noo N

1
< limsup — logsup P, (L, € A) < — inf A*(v)
n—oo T TEX veA

Finally, with B(X) the set of bounded measurable functions on X and
pr = [, w(x,-)p(dz), we have:

d
A*(v) = sup {—/ logﬂdu} = sup {—/logﬂdy}
u€CH(X) x u BEM1(X) dp

u>1 log %7 € B(X)
This result is proven in [34] by the subadditivity method exposed in Theorem
2.1.2. It contains in fact Sanov Theorem as a particular case.

Assumption (U) is really too strong: for example the Ornstein-Uhlenbeck pro-
cess, with generator %A + xa%, doesn’t satisfy this. Donsker and Varadhan
have proposed in [37] another method which allows to relax this assumption.

Mixing processes

Another point of view is to consider a Markov Chain under its invariant mea-
sure as a particular case of a stationary process. In this general setup, Large
Deviations Principle have been derived under some mixing assumptions. We
can not hope to get any result uniformly in the initial condition in this way.
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Hence, for (Xj),-, a stationary sequence of random variables, we define:
ngo{X,- ca<i<b}

and define the condition (S) of mixing, first introduced by Bryc and Dembo
in [16]:
(S) For all C > 0, there exists a non-decreasing sequence [(n) such that :

l(n)
Z n(n+1) <0

n>1

(S_) sup {P(A)P(B) —™MpANB) :

A€ FE, BeFRte™ ki k e N < e

(S..) sup {P(A N B) — ™ P(A)P(B) :

A€ FP, BeFI™ ki ky e Np < e
Theorem 2.2.4. If the sequence of stationary random wvariables satisfies As-
sumption (S), then the law of L, satisfies a Large Deviations Principle (for
the T-topology) in M (X) with rate function :

]. n—1
A (v)= sup ((V,v) —A(V)) where A(V)= lim —logFE (ezi=1 V(X”‘)>

VEB(X) n—o0 M

The 7-topology is the weakest topology on M;(X) such that v — (V,v) is
continuous for all V' € B(X). It is finer than the weak topology, hence a Large
Deviations Principle in the 7-topology is a stronger result than in the weak
topology. In fact, Sanov Theorem is also available in the 7-topology (this is in
particular implied by this last result).

The proof of this result relies again on a subadditivity argument, in an approx-
imate version: if f(n+m) < f(n)+ f(m)+6(n+m) with §(n) non-decreasing
and ), 0k) o6 then limy, e @ exists and :

k(k+1)
. f(n) _ f(m)
< _ E
nh—I>Igo n — m +4 k—i—l vm

k>2m

Another mixing condition has been first introduced by Chiyonobu and
Kusuoka in [27], and called the hypermixing condition. We give here a slightly
different version, as stated in [16] or [32]:
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(H2) There exists 5(I) € [1,00], ¥(l) > 0 such that for all &y, k; € N,
W € Lo (Fo"), Z € Loo (FET2H)

E(W)E(Z) — EWZ)| < () (EW[P©)70 (E|2]20) 7@

where lim;_,00 (1) = 0 and limy_,s0(3(1) — 1)I(log )™ for some & > 0.

Bryc and Dembo have then proven that (H2) implies the previous (S) As-
sumption, so we get the same level 2 Large Deviations Principle under this
Assumption (H2).

The importance of this hypermixing property comes from the fact that,
for Markov Processes, hypermixing is implied by the hypercontractivity of the
associated semi group, which is:

47T > 0 such that ||PT||L2|—>L4 =1

And hypercontractivity is equivalent in a symmetric setting to the log-Sobolev
inequality. We refer the reader to [34] for all these developments, and to the
recent works of Stroock and Zegarlinski for applications of these concepts to
the study of Glauber dynamics for Gibbs measures.

Many other mixing conditions exist. We do not detail them here, referring
the reader to [16] for all their definitions and links between them.

2.2.3 Level 3 large deviations

We present now even more general Large Deviations results, concerning a
measure associated to the whole history of the process (X;),.,- We define for
this the associated empirical process: -

1 n—1
Ry =~ 0rix) € M' (X1) (2.1)
1=0

where X = (Xy, Xi,...) is the entire process, and T*(X) = (X;, X;;1,...) is
the temporal shift by 3.
Alternatively, we may also define

n—1

~ 1 7
R, = EZJT% € M (X7)
=0
with X, = (..., X, ... s Xn-1, Xo,-- -, Xp1,...) a periodic sequence of period
n constructed from X. R, is the periodic transformation of R,. Its principal
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interest is that it is with values in the set of stationary (for the shift 7") proba-
bility measures on X%, which is noted My (X%). Large Deviations results for
Rn and for R, will be equivalent.

Using again the Contraction Principle, we may note that a Level 3 re-
sult will contain the Level 2 one, by projection on the first marginal, but
also lot of other estimates, for example for the behavior of an observable like
1/n Zz;é (Xk, Xk415- -+ Xg1)- These estimates are of first importance for
applications to Statistical Mechanics, for example when one wants to evaluate
correlations between neighboring sites.

We present the way to obtain such results for a Markov Chain in the uni-
form case. We prove in fact first a result for the k-empirical measure, then go
to the empirical process by a projective limit argument.

For two finite sequences =z = (z1,...,2¢) and y = (y1,...,yx), we define:
k-1
Tk (xa dy) = 7T(.Z‘k, dyk) H 6$i+1 (yz)
i=1

Theorem 2.2.3 applies to the Markov chain (Xj, ..., Xijk);s on X%, with
transition kernel 7, to give: N

Theorem 2.2.5. If the Markov Chain (X,,) satisfies Assumption (U), then the
laws of the k-empirical measures L%k) = %2?21 Ox;,. X € Ma (Xk) satisfy a
Large Deviations Principle with good convex rate function :

Iy(v) = sup {—/ logMdu}
uECb(Xk) X U
u>1
We can obtain for k > 2 a better expression for I, . If, for p € M(X*), we

note p;u € M*(X?) its i first marginals, and for p € My (X*¥°1):

(noem) = [

Xk-1

[ / L@ wyeay ™ (Tr-1, dy)} p(dz)
X
then :

L) H(v|(px_1v) Q¢ m) if v is shift-invariant,
V) =
‘ 00 otherwise.

From this result for the k-empirical measures we can deduce by a projective
limit argument the level 3 Large Deviations Principle:
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Theorem 2.2.6. If the Markov Chain (X,,) satisfies Assumption (U), the law
of Ry = 1370 6rix € My (XN) satisfies a Large Deviations Principle with
good rate function:

I(Q) = SUPgs>o H (PkQlpr 1Q ®, )  if Q is shift-invariant,
00 otherwise.

We have in fact a simpler expression for the rate function :

(@) = H(Q71Q§ ® m) if @ is shift-invariant,
T otherwise.

with Q5 € M! (X%-) and Q7 € M! (X%-Y{1})) are defined by

Qo : (X1 ---,T0) € A) = (ppQ)(A)
and Qi(z: (Ta—k,...,71) € A) = (mQ)(A)

For hypermixing Markov Chains, we have to add to Assumption (H2)
another one:
(H1) There exists I, < oo such that for all k,kq,...,k; and for all

. . k1+-+k;+(i—1)1
(Wi)i<i<k satisfying W; € Ly (Fkli---Iki:(+(i1—)1)z)3

k

5(| I

=1

)sf[E(\Wil“)”“

We can then proceed under these two conditions as in the uniform case to get:

Theorem 2.2.7. If the Markov Chain (X,,), with stationary measure P sat-
isfies Assumptions (H1)and (H2), the law of R, satisfies a Large Deviations
Principle with good rate function:

1(Q) = {IU(Q) if prQ < piP for all k > 1,

0 otherwise.

Chiyonobu and Kusuoka obtained (in [27], see also [34]) a Large Deviations
Principle for R, under the invariant measure of a stationary process satisfy-
ing slightly different hypermixing assumptions with the affine rate function
I,(Q) = limy_, %H(ka\ka“) called the specific entropy.
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Under condition (S), the level 3 Large Deviations Principle holds with the
different rate function:

Q) = sup Afy) (Pk2)

with Az“k) the Legendre transform of:

A(k)(V) = lim l log]E( exp (”zzl V(Y,..., Yi+k71)))
i=0

n—oo N

We know for this rate function only that I(Q) = oo if Q is not shift-invariant,
and that I < I, but this inequality can be strict.

All previous cases can be specialized to the of (X;) i.i.d. of law pu. We get
then for the rate function:

1(Q) = lim %H (Pn Q")
= iliIQ)H(ka“?k—lQ ® 1) = H(QT|Q ®o 1)

And we can get in this setup a simpler expression of last term, giving the
following:

Theorem 2.2.8. If (X,,) are i.i.d.r.v. with law p, then the laws of R, satisfy
a Large Deviations Principle with rate function:

1Q) = [ H@iuln Q)

where @}, is a regular version of the conditional probability Qi (-|X;,7 <0)(w).
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2.3 Survey of large deviation results for dynamical systems

We present in this Section the existing large deviations results for dynamical
systems. We consider a map f : & — & with (X, d) a compact metric space
and study the law of the associated temporal empirical measure

1 T-1
RT = T géft(w)

under a given initial measure.

If the context can look really different, due to the deterministic transition
from z to f(z), it is sufficient to look at the Definition of the empirical process
associated to a stationary random process given in (2.1) to see that it could be
understood as the action of the (temporal) shift on the space AN. This is the
viewpoint we will adopt in the sequel of this Chapter, and in the remaining of
this thesis.

However, the context is different enough to make us express the rate func-
tions in a more adequate formulations, using the setup of Thermodynamic
formalism. This is the reason why we recall in first Subsection some facts of
this theory. For a more general approach and all the proofs, we refer to the
well-written introductory book of G. Keller [66].

Let us start by mentioning two essential properties that a dynamical system
f on (X, d) may satisfy:

Definition 2.3.1. f satisfies expansiveness with constant § if, for x,y € X:
d(f'z, fly) <6 ¥t>0 = az=y

Definition 2.3.2. f satisfies specification if for all 6 > 0, there exists p(d)
such that for any k € N*, z1,--- 2 € X, T1,--- , T €N, p1,--- ,pp_1 > p(9),
there exists x € X with:

d (ftm, ftxl) <0 for0<t<Ty
d (fT1+p1+ta:, ftxg) <0 for0<t<T,

d (le+T2+---+Tk—1+P1+---+Pk—1+tl.’ ftxk) <0 fO’f‘ 0<t< Tk

2.3.1 Thermodynamic Formalism
Ergodicity

Definition 2.3.3. M, (X) denotes the set of probability measures which are
invariant under f.
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An invariant measure v is ergodic if v(A) = 0 or 1 for any A invariant by f.
We denote ML, (X) the set of ergodic probabilities.

erg

The main result for ergodic measures is the ergodic theorem:

Theorem 2.3.1 (Ergodic Theorem). Ifv € M, (X), then for all g € L'(v)
and for v-almost all x:

N

-1
1 t
A gOf($%—/£ng

t

Il
o

Entropy
For A= {A,...,Ax} and B ={By, ..., B.} finite partitions of X, let
AVB={A,NB :1<k<K,1<1<L}
Then, for v € M}, (X) and A a partition of X, we define:

o h(v|A) == v(A)log(v(4)) and Ar=\/ f(A)
AcA 0<t<T
o1
[} hf(l/|.,4) = Ill—{rolo Th(V|AT)
o h¢(v) =sup{hs(v|A) : A finite partition of X'}
This last quantity is the metric entropy of v under f.
Proposition 2.3.1. h; is convex affine: if v = Zlel v, with ZzL:1 a = 1,
then hy (v) = Sor, athy(v).
If furthermore f is expansive with constant §, then:

1. Forv € M} (X) and for any partition A such that v(0A) = 0 and

diam(A) < §, we have:
hy(v) = hs(v|A)

2. hy is upper semi-continuous.

A well known result about entropy is the Shannon-Mc Millan-Breiman
theorem, which expresses that, for an ergodic measure, entropy describes the
asymptotic size of elements of the partition:

Theorem 2.3.2 (Shannon-Mc Millan-Breiman). If v € M, (X) and A
1$ a finite partition, then for v-almost all x:

log1(Ar(x))

T T—00

» hy(v]A)

where Ar(z) denotes the element of the partition Ar which contains x.
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A metric equivalent of this theorem, which tells that, for an ergodic mea-
sure, the metric entropy describes the number of balls necessary to cover a
significant set, will be useful in many proofs of lower bounds of large devia-

tions.
ForT> 0,0 >0and 0 <b <1, we denote

b(T;6) ={y € X : d(f'(z), fily)) <6 V0O<t<T} (2.2)
N(T;6,b) = min {Card(Y) : V( U b (T, 5)) > b} (2.3)

(we call a set YV satisfying the condition in 2.3 a (T'; 0, b)-covering set for v)

Theorem 2.3.3. If v € M, (X), then for all 0 < b < 1:

he(v) = hmhmlnfT log N(T;6,b) = hmhmsup ; log N(T’; 6, b)

6—0 T—oo =0 754

This characterization of metric entropy as a measure of exponential rate
of decreasing for dynamical balls is first due to Katok [63]. A proof of a
multi-dimensional generalization is given in Theorem 3.8.3.

Topological pressure

Aset Y C X is (T; 0)-separated if

.0 €Yo #2 = 1 &by(T;0)

We define for V € C(X)

T-1
Z;(V,5,T) = sup {Zexp (Z Vo ft(:v)) : Y (T, §)-separated set} i
€Y t=0

Then:
P¢(V) = limlim sup T log Z¢(V,6,T)

020 700

is the topological pressure of V' for the dynamic of f. The main result for this
quantity is the Gibbs Variational Principle, which defines it as a variational
expression of the entropy:

Theorem 2.3.4 (Gibbs Variational Principle). For any V € C(X):

PV)= s (hf(y)+ /X Vdu) (2.4)
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and, if hy is upper semi-continuous, for any v € M}, (X):

hy(v) = inf)(Pf(V)— /X Vdu) (2.5)

vec(x

In the particular case of V' = 0, the pressure is called the topological entropy
of the system:

hiop(f) = P;(0) =  sup  hy(v)
veMl (X)

inv

2.3.2 Via mixing conditions

Orey and Pelikan prove in [83] a uniform Large Deviations Principle for station-
ary processes under a mixing condition (called Ratio-Mixing) and a Feller-type
hypothesis (Continuous Dependence) on a compact space, adapting results of
Donsker and Varadhan.

They show that this applies to Gibbs measures for subshifts of finite type and
adapt it in [84] to C? Anosov diffeomorphisms, using Markov partitions. The
rate function is in this case the ”defect” in Pesin’s formula.

Stationary processes

We work on € = I'? with I a compact metric space and will denote by o the
shift on €.

We set Q- =T%-, Q, =N and F,,,, = o{w; : m <i<n}

We have already mentioned that this setup is the same as for Level 3 large
deviations described in Section 2.2, taking X;(w) = w;. We have then seen
large deviations results under various mixing conditions.

Orey and Pelikan introduce the Ratio-Mixing condition :

(RM) There exists a non-decreasing function m(n) such that 0 < m(n) <
m(

n,—n)—>0and:

n

lim sup < log - () N, w €Q A€ Fummp =0
n—o00 ,U,ZL (A)

where p  are regular conditional probabilities of u given F_ o.

Define :
1 n—1
R (w) =— > Gk, € MH(Q)
k=0

Qnw_(A) =y (R, € A) for Ac M)

Then:
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Theorem 2.3.5. Let p € M} (Q) with u* satisfying (RM). The conditional

inv
measures [, satisfy then a uniform Large Deviations Principle with rate func-
tion I:

1
lim inf — log 1I€1£2 Qnw (A) > —inf I(v)  for A open

n—oc T VEA

1
limsup —log sup Q. (A) < —inf I(v) for A closed
n—oo 1 w_€Q_ vEA

Proof. (Main steps) They just use sub-additivity as under condition (U), es-
tablishing directly a complete Large Deviations Principle since the state space
() is compact.

They find a basis A of the topology of Q such that for any A € A, Q,(A) =
inf, co_ Qnw_(A), is super-multiplicative and then :

L(A) = lim %log Qn(A)  exists VA€ A,
I(v)=—inf{L(A) : ve A, Ae A}

is lower semi-continuous and convex. Hence, using (RM) to compare @, and
sup,_ca. @nw , we get the Large Deviations Principle with rate function I. [

To identify this rate function, another assumption is needed:

(CD) For every Y : Q — R continuous and F_, ;-measurable, w — (V)
is continuous.

We have then:

Theorem 2.3.6. For y € M} (Q) with p}_ satisfying (RM) and (CD), the

inv
rate function for the Large Deviations Principle in Theorem 2.3.5 is :

) = Jo. H(yw_u\,u:_'l)l/(dw_) if v € Mino(Q2) and Vo K ,u:,_u v-as
00 otherwise.

Gibbs measures

We specialize here to the case where I' = {0,1,--- , N—1} and, for A an N x N
matrix of 0 and 1 assumed to be irreducible (i.e. such that there exists m with
(Am)z-,j > 0 for any 4, j) we denote :

' ={we: Ay, =1 VieZ}
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(Q4,0) is called a subshift of finite type. A sequence (z;),.; is A-admissible if
A =1 for every i € Z.

TiyTit1
For B; = {w € Q4 : w; =i}, (CD) reduces in this case to :
(CD") w_ — pf (B) is continuous for 0 <7 < N.

And if we assume inf{y’ (B;) : w_ € Q4,0 <i< Nst. A, 9, =1} >0,
then p satisfies (RM) with m(n) = m.

For ¢ a Hélder continuous function on Q4, we know that there exists a
unique u € M} _(Q4) which is a Gibbs measure, that is such that there exists

mnv

C,C">0, P € R with:

pn i =w; V0<i<n)
C S n—1
exp (—Pn +Y 00 (okw))

This result on uniqueness of Gibbs measures is proven in the Lecture Notes of
Bowen [11], using the Ruelle-Perron-Frobenius Theorem.

<

We may apply Theorem 2.3.6 to this measure p to get:

Theorem 2.3.7. There exists a version p* satisfying (CD) and (RM), hence
the Large Deviations Principle holds for the laws of R,, under any initial mea-
sure (), with:

I(v) = —hs(v) — fQA wdv if v shift-invariant,
RS otherwise.

Anosov case

This result applies also for uniformly hyperbolic dynamical systems. For X a
Riemannian compact manifold, we take now f : X — X a transitive (i.e. such
that there is a point with dense orbit) C? Anosov diffeomorphism, that is with
a continuous splitting of the tangent bundle TX = E* + E* with C' > 0 and
A € (0,1) such that :

I1Df"(@) - vl <CA"|[o]| Vn 20, v e E;
IDf~"(x) - v]| <CA*||v]| Yn>0,ve E;

We say also in this case that f is uniformly hyperbolic on X. Then ¢%(z) =
—log ‘det (Df (=) E;)‘ is Holder continuous and we can use Markov partitions
construction to code this dynamical system.

It allows to construct a transition matrix A and the coding 7 : Q4 — X (see
Chapters 18 and 19 of [64] for details on this construction).
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Let © = ¢*ox. @ is also Holder continuous, but now on Q4. We can then use
previous result for the associated unique Gibbs measure fi. Gibbs measures
are in fact also equilibrium measures, hence 7z is characterized as the unique
minimizer of v — hy(v) + fQ 4 @dv among f-invariant probability measures.
And its image u = 7(z) is the unique equilibrium measure on (X, f) for ¢. It
is also called the SRB (Sinai-Ruelle-Bowen) measure of the system.

We get then in this context, by an application of the Contraction Principle:

Theorem 2.3.8. With m the normalized Lebesque measure on X, the Large
Deviations Principle holds on X under m for R,(z) = %Zz;é O (z) with rate
function :

I(l/) _ {_hu(f) —fX(‘pudV Zf” € M%HU(X)i
00 otherwise.
During the proof, we obtain also the Large Deviations Principle under the SRB
measure p with the same rate function.
We can identify I(v) = —h,(f) +>_, .50 Ai, With A; the v-Lyapunov exponents
for f. So I(v) > 0 means exactly h,(f) < D, ..o Ai which is the Pesin formula:
the rate function I measures the defect in Pesin formula.

Y-mixing

Denker gives in [33] a proof of the Large Deviations Principle for the behavior
of 1/nY" goo® under the Gibbs measure associated to a subshift of finite type,
when ¢ is Holder continuous. This result is an equivalent of level 1 LDP in
Section 2.2.

He states for this that a Gibbs measure is ¢-mixing, that is (his definition is
slightly different from that in [16]):

n(AN B)
p(A)u(B)

decreases to zero at an exponential rate.

¥(n) = sup {‘ — 1‘ tAeF 0, Be fn,+oo}

2.3.3 Via volume estimates and Shannon Theorem
Seminal study of Takahashi

The first approach to large deviations theory for dynamical systems was in
fact done by Takahashi in the early 80’s. In particular, in [98], if he does not
state explicitly any large deviations result, he precisely describes the natural
objects linked to this theory.
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He defines for f : X — X and m a probability measure:

n—oo I

P(U) = limsup = log/X exp < — HZ_I U(fl(m))) m(dz)

h(v) = inf ) <P(U) +/XUdV>

vec(x

n—1
. 1 1
Q(G) = limsup — logm{x eX . - g(sﬂ(w) € G}

n—oo I

g(v) = inf{Q(G) : v € G open in M'(X)}

He proves that g < h.

In the particular case of the shift o on a finite space {2 with m having a positive
continuous version j,,, of Jacobian (j,,(ax) = m(c~(wy) = a|z) m-a.e.), he gets
that both functionals are equal and identifies them with quantities intrinsically
linked to the system:

h(v) = g(v) = hy(v) + /Q®N 10g jm dv

To prove that g(v) > h,(v) +fQ®N log ., dv, he uses the fact that for v ergodic,
log j,, describes the exponential speed of decreasing of the measure under m of
a cylinder, and hf(v) the exponential rate of the number of cylinders necessary
to cover a v significant set (as is described by Shannon-Mac Millan-Breiman
Theorem, see 2.3.2).

This method is not far from a complete proof of large deviations. He would
have done it taking liminf instead of limsup in the definition of ). He does
this remark and some other extensions in his later paper [99].

Another interesting point of this seminal paper [98] is the conjecture that
the functional f is affine when the map f is structurally stable. He proves it
in a particular setting.

The same kind of method has been generalized to many other situations.
We give these developments here, and the generalization to the setup of maps
satisfying expansiveness and specification in Section 2.3.4.

Gibbs systems

The complete development of this method to get a general large deviations
result for Gibbs measures on multidimensional shift systems has been done by
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Féllmer and Orey in [82, 42] (at the same time, different proofs of the same
result where given in [81, 31]).

On X = I'?" with T a finite set, they study the dynamics of the shifts
(0%)rega defined by (o%z); = z1,; and a stationary interaction potential (Uy)
indexed by all finite subsets V' of Z? such that:

Z ||UV||
V]

0eVv

Definition 2.3.4. A measure p € M;, (X) is a Gibbs measure associated to
U if, for any boundary condition n, the conditional measures satisfy:

pelavin) = Zv()exp (= Y Ualov Vive))
ANV #D

Follmer and Orey prove that the associated empirical process

Ry (z) = % S s

1EVR

(where V,, = [0,n)%) satisfies under any Gibbs measure y a Large Deviations
Principle with rate function:

1
I(v) = lim — (V|Vn ‘ ,U|Vn)

= /Zmd +P( ZV%)

Their method is a complete development of the arguments proposed by Taka-
hashi. It has been recently generalized to multidimensional subshifts of finite
type by Eizenberg, Kifer and Weiss in [39].

The fact that we study the system under a Gibbs measure, for which the weight
of cylinders is well known, plays a great role in these proofs.

Generalization to smooth systems

Young generalizes in [105] this method by noting that this Gibbs property can
be replaced in some smooth contexts by a result of the type Volume Lemma.
Specifically, she uses in an abstract setup local estimates of entropy and sharp
description of the size of balls under the initial measure to get large deviations
results.

She works with f : X — X continuous on a compact metric space X, and m
a probability measure. Denote S, = Z?;ol @ o f', and, as in Section 2.3.1:

bo(T;0) ={y € X : d(fi(z), f'(y) <6 VOL<t<T}
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She gets in this context an upper bound assuming the existence of a potential
describing the size of balls under m:

Theorem 2.3.9. If there exists € € C(X) and constants C,e > 0 such that:
m(by(n,e)) < Ce @) Ve X n>0
then for every ¢ € C(X) and c € R, we get :

1 1
limsup —logm (—Snw > c) < —inf{/ Edv —hy(v) :
n X

n—oo T

v e M (X) st / pdv > c}
x

She gets also a lower bound of the same type under the additional assump-
tion of specification (see Definition 2.3.2) which allows ”gluing orbits” to go
from ergodic measures to general ones:

Theorem 2.3.10. If [ satisfies specification and there exists £ € C(X) such
that there is € arbitrarily small and C = C(g) > 0 with:

m(by(n,e)) > Ce™¢@ Vrec X n>0

then for every ¢ € C(X) and c € R, we get:

1 1
lim inf — log m <—Sng0 > c) > —inf {/ Edv — hy(v) :
n X

n—oo n
veM; . (X) st / pdv > c}
x

Although she states these large deviations estimates in some particular way,
the method can be extended to a general Large Deviations Principle for the
empirical measure linked to the system, in particular because the estimates
are available for any continuous observable .

From this abstract result, Young obtains various applications to concrete
cases. For instance, if f : M — M is a C? diffeomorphism on a C*® Riemannian
manifold M, she gets:

Theorem 2.3.11. If A C U is an Aziom-A attractor in M, i.e.:
e A is compact invariant and uniformly hyperbolic for f,

o U is an open set such that U is compact, fU C U and Npenf"U = A,
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e fia has a dense orbit,

then for every o € C(U), %Sngo satisfies a Large Deviations Principle under
the Riemannian measure with rate function:

K(s):inf{—hf(y)—f—z/\i cvE M (X )/U(pdy:s}

Ai>0

As previously, the \; denote the Lyapunov exponents associated to the measure
V.

The abstract result of Theorems 2.3.9 and 2.3.10 being stated, the way to
establish this result is to find a potential £ that describes well the behavior of
the size under initial measure m of the balls b, (n;¢).

This is generally called a Volume Lemma, and can be established in this setup
with £ = log | det(Df|g.)| where E* is the unstable manifold.

2.3.4 For a map satisfying expansiveness and specification

Haydn and Ruelle have introduced in [45, 94] a general Gibbsian formalism
adapting what existed for shift systems to dynamical systems satisfying expan-
siveness and specification. And it appears to be a good setup to obtain a Large
Deviations Principle, although it was not clearly written in the litterature till
recently, to our knowledge.

This is the reason why we will here present this Gibbsian formalism, as stated in
[94], and state the Large Deviations Principle for Gibbs measures in this setup.
It contains most results of the previous Section as consequences, since subshifts
of finite type, Anosov diffeomorphisms or expanding maps of the circle satisfy
expansiveness and specification. It applies moreover to new cases.

We work during the whole section with (X,d) a compact metric space
and a continuous map f on X which is assumed to satisfy expansiveness with
constant dy and specification (see Definitions 2.3.1 and 2.3.2).

For any potential ¢ € C(X'), we define:
by(n;0) ={y € X : d(f'(2), f'(y) <6 YO<t<n}

K,(6,n —sup{ Z o(ffy)| : z,y s.t. yebx(n;é)}
—SUPK( n)

k=0

The set of potentials we will consider is then:

V={pelX): K, <oo}
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Haydn and Ruelle do not require the continuity of potentials, and this is one of
the interests of their approach, but we restrict here to continuous potentials,
for simplicity.

We need other definitions to introduce the notion of Gibbs measures asso-
ciated to a potential p € V:

Definition 2.3.5. = and y are conjugate if limy_,, d(f'z, f'y) = 0.
They are T-conjugate if flz = fTy.

Expansiveness property implies that:

Proposition 2.3.2. x and y are conjugate iff there exists T such that they are
T-conjugate.

Definition 2.3.6. (U,T) is a conjugating homeomorphism if U is compact,
T : U 17U is a homeomorphism and there exists T such that for any r € U
x and Tx are T'-conjugate.

Gibbs measures for potential ¢ € V are measures for which change by a
conjugating homeomorphism can be expressed with this potential. This is a
generalization of an unusual definition for shift systems:

Definition 2.3.7.

€ MY (X) is a Gibbs state for ¢ € V if for any conjugating homeomorphism
U,7):

CZ—“ =exp ) (poffort—pofh)
K k=0

€ MYX) is a quasi-Gibbs state for ¢ € V if there is C > 0 such that for any
conjugating homeomorphism (U, T):

ddT—u <Cexp) (poffort—pofk
K k=0

The main characterization of quasi-Gibbs states is given by the following
equivalent conditions:

Theorem 2.3.12. For a potential ¢ € V, the following conditions are equiva-
lent:

1. p s a quasi-Gibbs state
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2. there exists ¢ > 0 such that for allz € X, T > 0 and § < dy:

exp [ Y ¢ (f'2) = TPy(¢) = & < b (n; )

t

S
-

Il
)

~

<exp[ )  o(f'x) = TPi(p) + ]

Il
)

3. If v is a quasi-Gibbs state, then u and v are equivalent, with dv/dy €
L*>®(p) and du/dv € L*(v).

The second formulation will be crucial for a proof of Large Deviations:
it expresses what we called in previous Section a Volume Lemma. More pre-
cisely a Volume Lemma states that the studied measure (Lebesgue or Riemann
measure) is a quasi-Gibbs state for the associated potential.

Ruelle proves also that under these assumptions of expansiveness and spec-
ification, there is for each ¢ € V a unique associated Gibbs measure, and a
unique invariant quasi-Gibbs measure. He identifies also this last one with the
unique equilibrium measure for ¢ and with quantities linked to the spectrum
of the transfer operator.

But we do not need this property of uniqueness of Gibbs state to prove a
general Large Deviations Principle. We get indeed under general assumptions:

Theorem 2.3.13. Let ¢ € V and i, an associated quasi-Gibbs measure. Then
the sequence of empirical means Ry(x) = %ZtT:_Ol Ope(z) satisfies under p, a
Large Deuviations Principle with rate function:

) = Pi(¢) —hy(v) — [y @dv ifv is f-invariant
]+ otherwise

This result is not new, since the abstract Theorems 2.3.9 and 2.3.10 of
Young apply to this general case. Maes and Verbitski remark this in their
recent preprint [79].

They add that the result of Kifer (Theorem 2.3.14) applies also. It seems to
us that we should add in this case the assumption that the set of potentials V
is dense in C(X'). It means that the method of Young is more efficient since it
allows to avoid this additional assumption.

For other developments on maps satisfying expansiveness and specification,
in particular multifractal formalism, see [102, 100].
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2.3.5 Via spectral gap of the transfer operator

Lalley proposes in [73] another way of obtaining limit theorems for dynamical
systems. He states results for subshifts of finite type o : Q4 — Q4 (notations
are the same as in Section 2.3.2). In this context, one can introduce transfer
operators associated to any real valued Hélder-continuous map f:

Lrg(x)= Y e/Wg(y)

Y:10Yy=x

Ruelle Perron-Frobenius Theorem states (see proofs in [11]) that under these
assumptions, L satisfies a spectral gap property with a simple maximal eigen-
value A\ = e” =(f) > 0, associated eigenfunction hy > 0 and eigenmeasure vy
for the action of the dual operator. The Gibbs measure already presented in
Section 2.3.2 is in fact py = hyvy.

We may remark that for ¢) Hélder-continuous:

/ e g dpup = A" / £2.(ghy) dvg
nA nA

which allows to identify the limit of log-Laplace transforms, with the use of
the spectral gap property for £L;,, and L and a perturbation argument. We
get hence:

1 Af+z
A(z) = lim —log/ eV dyp = log% = P,(f + z¢) — P,(f)
nA f

n—o0 N

is a smooth function of z.

We can hence apply Gértner-Ellis Theorem (Theorem 2.1.4) to conclude that
%Snd) satisfies under uf a Large Deviations Principle (of the level 1 type, under
the Hélder-continuous observable ) with rate function A*.

Lalley uses in fact a refined Ruelle-Perron-Frobenius Theorem, proven by
Pollicott in [87] for complex-valued potentials, to get sharper results: local
limit theorems and sharp large deviations estimates.

At the same time, Rousseau-Egele [92] develops a similar strategy for the
class of expanding transformations of the unit interval for which the spectrum
of the associated transfer operator is described by the Theorem of Ionescu-
Tulcea and Marinescu. He gets in those cases also central and local limit
theorems.
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This has been recently generalized by Anne Broise in [15]. She gets the same
kind of results and sharp large deviations estimates.

Another generalization of this method to Anosov flows is due to Waddington
in [103].

It has to be noticed that all these results are established at the observable
level, and under regular enough observables. For maps of the interval, the per-
turbation argument allows only the statement of a partial lower bound around
the mean value, what makes harder the identification of the rate function.

Large deviations results for subshifts or Anosov flows are also linked with
many results concerned with the study of closed geodesics on compact mani-
folds of negative curvature (see for example [74], or [2, 1] for recent and sharp
results).

2.3.6 Variations on Gartner-FEllis theorem

Kifer develops in [71] a way of going from large deviations for the empirical
mean of regular observables to a measure level result.

He establishes a generalization of Gartner-Ellis Theorem when the state space
X is compact, showing that the differentiability of the pressure on a dense
separable set of potentials is sufficient to get the lower bound.

For (X,,) a stochastic process on X,V € C(X) and v € M. _(X) he defines:

mv

]_ n—1
= lim = im0 V(Xi)
AV) = nll)rgo " log]E(e 0 ) (2.6)
I(v) = sup (/ Vdv — A(V))
vee(x) N Jx

hence by duality:

A(V)= sup )(/Xde - I(l/)) (2.7)

UEMIII]V(X
He gets then:
Theorem 2.3.14.

1. If the limit defining A in (2.6) exists for any V € C(X), then L, =
%Z?;Ol 0x, satisfies a LDP Upper Bound with rate function I.
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2. If furthermore there ezists a dense separable set V C C(X) such that,
for any V €V, there is a unique measure [y realizing the supremum in

(2.7), then L,, satisfies also the Lower Bound with the same rate function
I.

This result applies then to the same kind of dynamical systems as pre-
viously (subshifts under Gibbs measures, expanding transformations, hyper-
bolic systems), in fact every one-dimensional map where a Volume Lemma and
uniqueness of equilibrium measure for enough potentials can be established.

Kifer states this in the case of a non invariant subset I' of X', getting a slightly
more general result where the escape rate from X occurs: he assumes that
I' C X is closed and puts:

I,={zecX:flxel V0<i<n}

n—1
R, (z) :%Z(kaw for x €T,
k=0
brz(n;d) = {y el, : d (fi:c,fiy) <d V0<i< n}

and Pr (V') the topological pressure of V restricted to I'.
He assumes furthermore that m is a probability measure on X such that
supp(m) =T and there exists ¢ € C(X) with:

(As(n) ™ < m (Us(z,n,T)) e 59 < Ay(n)
for all £,6 > 0 and z € T',,, and with lim = log As(n) = 0.
He states that under these assumptions:
Theorem 2.3.15.

1. If hy,(f) is upper semi-continuous for every pu € M(T'), then for any
closed K ¢ M(T'):

1
limsup —logm(z €T, : Ry(z) € K) < —inf{I(v) : v € K} < Pr ()
n

n—oo

2. If in addition there exists a dense separable set V C C(X) such that any
V eV verifies Pr j(0+V) = [V duy —I(py) for a unique py € M(T),
then for any open G C M(T) :

1
liminf —logm(z € T, : R,(z) € G) > —inf{I(v) : v € G}

n—oo N
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with:
I(v) = {‘hf(”) = frdv if v € Miny(D),

00 otherwise.

In a later paper [72], Kifer uses the same abstract Theorem 2.3.14 in the
general setup of a map satisfying expansiveness and specification with a dense
set of regular functions (see Section 2.3.4 for definitions and remarks) to es-
tablish a large deviations result about the equidistribution of periodic orbits.

He denotes CO the set of periodic orbits and CO(t) the set of those with some
period less than t. For v a closed orbit, he denotes 7(7) its smallest period
and ¢, = 7(y)™* Z:g) dfi(z) With z a point of .

He defines also v, the normalized counting measure on CO(?): for I' CCO,

() = NiCard(F NCO(t)) where N; = Card(CO(t))

t

Then the sequence of measures (*(v;) on M*!(X) satisfies a Large Deviations
Principle with rate function:

1) = {hmp(n —hy(v) i v e M, (),

+0o0 otherwise.

which gives an exponential rate of convergence of N, * Z’yECO(t) ¢y to the mea-
sure of maximal metric entropy (the equilibrium measure for the potential 0).

The results of Lalley [74], Babillot-Ledrappier [2] and Anantharaman [1]
can be seen as refinements of this Large Deviations Principle.
A similar result weighted by any Holder-continuous potential has been obtained
by Pollicott in [89].

2.3.7 Maps with an indifferent fixed point

Few results exist for dynamical systems which are not uniformly expanding or
hyperbolic. The only progress has been done recently for maps of the interval
with indifferent fixed points.

In [90], Pollicott, Sharp and Yuri study the map f : [0,1] — [0, 1] defined
by:
f(z)=z+2" modl

with 0 < s < 1, called the Manneville-Pomeau map.
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They give a new proof of the fact that there exists a finite invariant mea-
sure which is absolutely continuous with respect to Lebesgue measure, with
unbounded density.

They prove that p is not the unique equilibrium measure associated to the
potential ¢ = —log f’. The Dirac mass at 0 is another one and the set of
equilibrium measures is:

A={ap+(1—-a)dh : 0<a <1}

They prove also a large deviations upper bound for the family of weighted
averages of empirical means:

An:< > m>_l( > Wll(y)(%gf%k(y)))

Try=x Try=x

for any reference point z, with rate function I(v) = —hs(v) — f[o 1) ¢ dv which
vanishes on the whole interval A.

This result is in the spirit of the last presented result of Kifer in the previous
Section, taking pre-images of a point instead of periodic orbits. It does not
tell much about convergence since the rate function vanishes on a complete
interval.



3. SPATIOTEMPORAL LARGE DEVIATIONS PRINCIPLE
FOR COUPLED CIRCLE MAPS

We consider in this Chapter! a spatially invariant coupled map lattice between
expanding maps of the circle under a coupling which is weak and with short
range, i.e. such that the strength of the coupling between two sites decreases
exponentially fast with the distance between the sites.

Our main result is a large deviations principle for the spatiotemporal em-
pirical measure associated to the dynamics, stated in Theorem 3.1.2.
The spatiotemporal approach allows to relate the rate function with the ther-
modynamic formalism associated to the (d+1) dynamical system of the coupled
map and the spatial shifts (see Section 3.8 for a presentation of this theory).

This result is linked to previous papers of Jiang and Pesin [53, 51], where
they prove for the same system under a slightly different weak coupling as-
sumption the existence and uniqueness of the equilibrium measure associated
to a potential ¢ which they construct.

This potential governs also our large deviations principle. We improve with
this theorem the result of Jiang, giving an exponential rate of convergence to
the equilibrium measure.

The main step in our proof is a Volume Lemma, see Theorem 3.1.1.
It makes our proof direct (i.e. without the use of coding by a Gibbs system)
and independent of the uniqueness of the equilibrium measure.

We give our precise Assumptions and Results in Section 3.1. In Section 3.2
we recall the derivation of the potential we are interested in, done in [53] and
[61]. We explain then in Section 3.3 how our assumptions give what we call
the preserved expanding property, the key estimate for our proof. Section 3.4
is then devoted to the proof of the Volume Lemma and Sections 3.5 and 3.6
to the proof of the Large Deviations Principle.

I This Chapter corresponds to an article with same title, written with Gérard Ben Arous
and submitted for publication.
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3.1 Settings and results

3.1.1 The state space

We work on the state space X = (S1)2° (with d > 1), equipped with the
reference measure m = m®%* where m is the Lebesgue measure on the circle.
On the circle S* = R/Z, the distance is d(z,y) = mingez |z + k — y| < 1/2.
We put on X two distances constructed from this one:

e d(z,y) = sup;ezad(z;,y;) which makes X an infinite dimensional mani-
fold;

e d,(7,y) = sup;ezapd(xi,y;) where we take for i € Z¢ the norm [i| =
maxi<k<q |ix| and p < 1 is a fixed parameter. The main interest of d, is
that (X, d,) is a compact space, hence we can use the thermodynamic
formalism to describe the system.

We denote by S* the spatial shift of vector k € Z¢ on X: if x = (1;);cz4 then
(S*z); = 1i4. For N € N, we write Ay = [-N, N]¢ C Z%.

3.1.2 The coupled map

Let the uncoupled expanding map be Fy = ®;czqf; where f; = f : St — Slis
C'* and expanding, i.e. satisfies:

I<y<|fx)| <M VzeSst (3.1)
and f’ hence log|f'| is a-H6lder continuous:

log|f'(z)| —log|f'(y)|| < Crd*(w,y)  Vz,y €S (3-2)

We define also the coupling map G : X — X as a C? map (for the distance
d) commuting with all the spatial translations (S*)cz« and which satisfies the
following estimates:

dG; » .
‘% — 8 < £6% Vi, j € Z° (3.3)
J
92G, oy
o < & p?max(li=illi=kD) Vi, j ke Z? (3.4)
J

with £ >0and 0 < 0 < 1.
We denote K=E),.,4 0l and K, = & > ep 021l
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The first derived estimates are:

di(G(z) —2,G(y) —y) <€D P Hdy(z,y)  VieZ), zyeX (35)

kezd
0G; 0G; i .
B (z) — o (y)| <& Z 02kl (z,y) Vi, jeZ zye X (3.6)
J J kezd

The associated coupled map is then:
F = G O FQ

We say that F' satisfies Assumption (#) if it is the composition of two such
maps whose parameters satisfy the two conditions:

{9 <p (H1) 57)

y—-MK>1 (H2)

The first assumption is essentially technical, to get functions regular enough
for the distance d,. It implies in particular with (3.5) that G is Lipschitz
continuous for d,, hence is a-Hélder continuous.
(H2) expresses exactly the preservation of the expanding property for the
coupled map and implies two essential estimates:

5= — MKy > 1 (3.8)
K<1 (3.9)

Remark: These conditions for coupling are similar to those given in previous
papers on this type of system (they are called short range maps in [53] or [51]).

3.1.3 Volume Lemma

We define for T € N and F a finite subset of Z2

B,(T,E;6)={y : d, (S 0 F'(z),5'0 F*(y)) <6 V0<t<T, i€ FE}
(3.10)
the ball associated to a distance which describes the dynamics of F' and the
spatial shifts S. It contains the points whose orbit stays near a given orbit
under fixed space and time translations. The Volume Lemma describes the
measure of this ball in terms of local derivatives along the orbit of x:
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Theorem 3.1.1. If F satisfies Assumption (H), then there ezists a potential
function ¢ : X — R Hélder continuous for the distance d,, such that for any
reX,0<di< ﬁ, E a finite subset of Z¢ and T > 1, we have:
Cy(T, E, 8, p) exp ( Y poSio Ft(x)) < M(B,(T, E; )
0<t<T
1€

< C3(T, E,6) exp ( Z poS'o Ft(x)> (3.11)

0<t<T
1€ER
with:
li 1ICTE(5—1' 1ICTE(5—0 3.12
gl:))nggT|En| 0og 2( y H~ny 7p)_£1:>{?gT|En| 0g 3( y n, )_ ( )

for all 6 < ﬁ, 6 < p < 1 and for any sequence E, converging to Z% in the

sense of Van Howve (see Definition 3.7.1).

Remarks: 1. The potential function ¢ is defined in 3.26 in Section 3.2.2 follow-
ing readily the construction given in [51] and [53]. From this Definition and
the role it plays in the Volume Lemma (see for example [70] for an equivalent
result in the case of a single map), ¢ can be called the “logarithm of Jacobian
per site” of the map F.

2. The speeds of convergence in time and space are completely independent.
We can even take one limit before the other, if we understand then the first
limit as limsup and liminf.

3. This result is in fact true not only under Lebesgue measure but also for any
probability measure p which is locally absolutely continuous with respect to
it, with a Radon-Nikodym derivative satisfying with 0 < A < B:

B < Mg yp g

dm |,

A direct consequence of this result, or of Proposition 3.5.1, concerns the
topological pressure (see Subsection 3.8.3 for a definition) of the potential ¢:

Corollary 3.1.1. If F satisfies Assumption (H), the topological pressure of
the potential ¢ under the dynamical system (F,S) is null:

P(F,S)(‘P) =0

This was the main result of [50] in the context of Anosov maps and by the use
of coding. In our context, it is an important result because it ensures with the
Gibbs Variational Principle 3.8.4 that the rate function I (defined in (3.14)
below) is non negative.
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3.1.4 Large Deviations Principle

We can use the previous Volume Lemma to prove a spatio-temporal Large
Deviations Principle for the empirical process

1 1
- i X 1
Rrp(x) T/E| 0<§t<T dgiort(z) € M (X) (3.13)

i€l

under the initial measure 7 (and, more generally, under the same probability
measures as for Volume Lemma, see Remark 3 after Theorem 3.1.1).

We introduce the function I defined on M'(X) by:

I(v) = —h(r,s)(v) — fx edv ifve M (X) (3.14)
+00 otherwise

(see Section 3.8 for the definitions and properties of M} (X) and the metric
entropy h(g,s)).
We have then:

Theorem 3.1.2. Assume F' satisfies Assumption (H). Then I is a non neg-
ative, conver and lower semi-continuous function.

For any map s : N — N non decreasing and such that s(T) tends to infinity
as T tends to infinity, the sequence (Rr,a,,,)* (M) satisfies a Large Deviations
Principle with rate function I, i.e.:

1. For any K closed subset of M'(X), we have:

lim sup

1
wro—— logT{z : Rra,,,(z) € K} < —inf I(v) (UB)
Tooo 1| Ay

veK
2. For any O open subset of M'(X), we have:

(z) € O} > —inf I(v) (LB)

1
iminf —— logm{zx :
lim inf ogm{z : Ry inf

T—o00 T‘AS(T)‘ (1)
Remarks: 1. This result remains in fact true for more general sequences of
sets: the upper bound is valid for any spatial sequence E; converging to Z¢
in the sense of Van Hove, the lower bound for any special averaging sequence
(see Definition 3.7.2). Proofs are given in Sections 3.5 and 3.6 in this general
setup.

2. Whatever, the main fact is that time and space averagings must tend
together to infinity but at completely independent speeds.
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3. The independence of speeds of convergence in time and space is not surpris-
ing because we know that for weak coupling there is a semi-conjugacy between
(F,S) and shifts of a (d + 1) dimensional Gibbs system (see Theorem 2 in
[61]). The time direction becomes then a spatial shift like others on the coding
space.

This semi-conjugacy allows in fact to deduce a Large Deviations Principle for
Rr g, from the same result for Gibbs systems (see [42], [81], [31] or [39]) by a
contraction principle (Theorem 4.2.1 of [32]). We could not identify the rate
function obtained in this way, hence preferred to develop a direct proof, without
coding. It has however to be noticed that our analysis of inverse branches in
Subsection 3.3.2 is not far from the construction of a Markov partition for the
system.

4. Furthermore, the direct proof of large deviations result we give here leads to
new questions: if we manage to avoid the restriction on the coupling due to the
semi-conjugacy, we need to preserve in fact the expanding property. Could we
hope such a Large Deviations Principle in a more general setup, with stronger
coupling?

5. It is proved in [51] that for small enough coupling, there is a unique mini-
mizing measure for I (called an equilibrium measure for the potential ¢). But
we do not know for which coupling a phase transition case (i.e. a case where
there are at least two equilibrium measures) could occur. To analyze such a
situation, it would be necessary to describe the equilibrium measures as Gibbs
measures. As far as we know, such a characterization does not exist in this
context.
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3.2 Expansion of the derivative

In this section, we follow [53] to derive the potential ¢ by a sharp analysis of
the derivative of the map F' restricted to finite boxes. We give all the steps,
referring the reader to Section 5 of [53] for the detailed computations.

3.2.1 Finite box maps

For A a finite subset of Z% and n € X a fixed boundary condition, we define

FA’" Xy = (Sl)A — Xy
xa —> F(zp Vnpce)|,

with w = z V nrc defined by w; = z; when ¢ € A and w; = 7; otherwise. In
fact Fa, = G mym) © Fo with Gy = G(z4 V p0).

Ga,p is a C? map and if we write DGy, = Idp + Ap, with Ay, = (ai,j)ijeA,

we get from estimates (3.3) and (3.6) the following estimates for any i, j € A,
T, Ya € Xp:

|aij(za)| < €67 (3.15)
laij(za) — aii(ya)| < €Y 07 Fdy(z, ya) (3.16)
kEA
’ K .
a7 (@2) = aff) (@) < 5 00 (3.17)
0 (2a) = aff) (ya)| < 09N (3.18)

if AC A" and yA’|A = TA.

3.2.2 Expansion

Then, using (3.9):

14]ls0 < max (5 292""’"> <K:<K<1
1€

jEA



62 3. Spatiotemporal Large Deviations Principle for Coupled Circle Maps

hence log(Id + A) exists and we can write:

log | det DF ,(x5)| = log|det DFy(xx) det DG py) (Fo(za))|
= log|f'(z:)| + log| det (exp log(Id + A)(Fy(4))) |

= Zlog |f'(z:)] + logexp (trlog(Id + A)(Fy(zp)))
::}jkgqum|+tr(-}jﬁ;}fA%Fuxx»)
= Z (log | f'(z;)| — wami(za))

where wy i(22) = ENIV(MM»MMMNZQm-
Estimates (3.15) to (3.18) give analogous results for w under the same
condition (3.9):

&
[wami(za)| < -1 (3.19)
ME ,
(Wi (TA) — wami(Ya)| < 0" Fldi(za, ya) (3.20)
1-K
keA
1 )
|’LUA,7772'(I'A) — wA,n’,i(xA)| < m Qd(Z,AC) (321)
1 o
[wh i (TA) — War g (yYar)| < m aAEA\A) (3.22)

if A C A" and ypr|, = za.
Proof. To get (3.19), we start proving recursively on ¢ that:
; o
o] < xct-1gli=dl
This is indeed true for ¢ = 1, as stated in (3.15). And if this is true for ¢, then:

a5V < D laldla| < Y- K0

lezd lezd
< E2xct—1pli—il Z gt < gKctpli—il

lezd

because 0"=9lI=il < gli=il for all 4, 4, 1.
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From this and the definition of wy ;. ;, we get:

1 (t) K-t E
wA,n,iSZﬂai,ﬂ ng 7 < 1—K

t>1 t>1

For (3.20), we proceed identically, proving that for all ¢, if z; = y; for any

I #k:
(o) = a ()] < LEKT107 (o, )

(3.19) states it for ¢ = 1 and if this is true for ¢, then, using also estimate
(3.19):
t+1
ai; D wn) = ol ()|
t t t
<Dl @)l (ea) = aug(ua)| + lai(za) llag] (24) = aif (un)|
leA

<> (EKTOITEP I Ay (30, ya) + E07TIHERT 0 dy (23, y2) )
lEA

< EKT0H dy(zp, ya) Y J(OH + 101 < (4 1)EK T dy (x4, ya)
leA

This gives the desired estimate for wy y ;.

We proceed in the same way for the following estimates (3.21) and (3.22),
with the intermediate results:

, tict
a3 (za) =l (an)] < <040

2y 2
’ t A
a3 o) - aff ) an)| < g

O

All these estimates imply that 1;(x) = limy_oo WAy 5:(T|a,) exists, is in-
dependent of the boundary conditions, shift invariant (i.e. 1; = 1y o S* for all
i € Z%) and satisfies:

[tho(z)] < é (3.23)

ME )
[Po(x) — o(y)| < 1—K lgz:de"k'dk(x,y) (3.24)
0(2) = W no(®la)] € s GUA) (3.25)

2(1 - K)
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We deduce from (3.24) that assumption (H1) implies moreover that ), is
Lipschitz continuous for the distance d,,.
We define hence
p(z) = —log|f'(z0)| + o (3.26)

as the potential of interest to describe the dynamic of the system (F,S). ¢ is
well-defined and a-H6lder continuous for the distance d,.
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3.3 Conservation of the expanding property

We introduce § # E C A two finite subsets of Z%, a time T € Nand v € X a
reference point.
We choose a finite box restriction of FT to A, F{ with boundary conditions
changing with time: F} = Fj pt-1(4)0- - -0 F\ p(z)0 Fa 4. It implies in particular
that:

Fi(z|a) = Fix)|, VO0<t<T (3.27)

This will essentially simplify the step from F to F' in the proof of the Volume
Lemma. We don’t mention explicitly the dependence on the boundary con-
ditions following the orbit of z: we have already seen in the previous section
that the limit potential doesn’t depend on it.

3.3.1 Bijectivity of the coupling map

First of all, our assumptions on the coupling map G are sufficient to get:
Proposition 3.3.1. Under assumption (H2), Gy is a C* diffeomorphism.

Proof. We get from estimate (3.5) and the triangle inequality that

di(Ga(z), Ga(y)) > di(z,y) — €D 0° " Fdy(z,y)  VieA

hence if x # y, let ig be such that d;,(z,y) = max;ea d;(x,y) > 0. Then:

dio(GA(x)a GA(y)) > dio(xvy) (1 —-¢& Ze2li—k> 2 (1 - KZ)dio(xvy) >0

keA

because Ky < K < 1 by (3.9). This proves that G, is one-to-one.

We have already noticed that || Al|, < 1, which gives that DG, is invertible,
hence that G, is everywhere a local diffeomorphism. The range of G is then
open, and closed by compactness of X, hence its range is the whole space X,
because it is connected.

(5 is then a bijection and a local diffeomorphism, then a diffeomorphism.
O

Remark: G is also a bijection (one-to-one in the same way, onto taking limit of
pre-images on finite boxes). This was a specific assumption in most previous
papers.
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3.3.2 Inverse branches of F}

The single site map f : S' — S* is of degree p = [, |f'(z)|dz, an integer
between v and M, and has then locally p inverse branches around each point.
We can in fact construct them globally except in one point (see Section 2.4 of
[64]).

We will use this to construct inverse branches for Fj around the orbit of
x. Associated to the fact that G is a diffeomorphism, it will give us inverse
branches for FT.

We denote C[A] = {0,...,p— 1}* to enumerate the inverse branches of Fy.
At each time 0 < ¢ < T, we construct them around F*(z). We take

Ay={y e Xy : di(y,Fyo F'(z)) <1/2 Vie A}

(then m*(A;) = 1) and for any site s € A we denote x(t 2 xgt Do x;tf% (resp.
al"? L alh Z)) the pre images by f of (Fyo F'(x)); (resp. (Fyo F(z)); —
1/2), indexed such that:
° (t,i) = F(z)
° (”) < a( 2 <x§t’i) < < a(() ) < xgtz)
Then, for all 5 € C[A], we define:
20 = (27 the pre images by Fy of Fyy o F'(x)
g = \'sm) ). b ges by Lo Of L'g T
1EA
— (t) (b9
Ay = H (“,Bz ’aﬂ(z)+1)
ieA
satisfying the following straightforward properties:
) x(t) = F'(z) o xg) € Agy VB eC[A]
U Ag, t) = e [} is a bijection from Az, onto A;

BEC[A

We denote Foftl,ﬂ its inverse characterized by Fg ﬁ( ) = Agy N Fy ' (y) for any
y € A;. These inverse branches satisfy a contraction property, which has to be
precisely described:

Lemma 3.3.1. For all y,z € Ay, there exists @, permutation of C[A], with
Y, 2 > @, , measurable, such that ¥ B, B € C[A],Yi € A, if B(i) = B(i), then:

1 -1
—di(y,2) < di (Fy50), Byl 5)(2)) < ;dxy,z) (3.28)

If y or z equals Fy o F'(x), then ¢, , = Id.
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Proof. The left inequality is obvious, because d;(Fy(9), Fo(2)) < Md;(g, 2) is
always true.

For the contraction rate, we have to be careful because the partition is adapted
to F'(z) but not to all other points. What has to be understood is how d;(y, 2)
is realized at each site 7 € A:

e if the shortest arc from y; to z; (defining the distance) does not contain
(Fo o F'(z)); — 1/2 (case (i) of Figure 3.1), then ¢, ,(8)(i) = B(i);

e otherwise, ¢, .(8)(i) = B(¢) & 1, depending on the order of the three
points y, z and (Fyo F*(x)); —1/2 (cases (ii) and (iii) of the Figure)) but

@ o

(i) (i)

Fig. 3.1: The three cases, where ¢ = Fy o F'(x) — 1/2. If f preserves the direction
on the circle (i.e. f' > 0), (ii) corresponds to ¢, .(8)(i) = B(i) + 1, (iii) to
©y,2(B) (%) = B(i) — 1, and this is reversed otherwise.

This defines ¢, , as a one-to-one map, and if we are interested in site ¢, the
inverse maps [ and S are indistinguishable, hence:

d; (Fow( ) FOtlzpyz(/j)( )) =d; (Fow( ), FOtl,cpyz(/B)(z)) < %di(y,z)

If y or z is equal to Fy o F*(x), we always are in the first case.

It is not hard to check that ¢, , depends on y and z only through the distance
and the order of their coordinates in the open sets S' \ {(Fy o F(z)); — 1/2},
which are measurable maps of y and z.

We have also, from the left inequality of (3.28) that:
{vsarwm <5y be U (3.29)
BECIA
/3(1)=0
We can then describe the inverse branches of FI', with:
C[T,A] = {0,...,p— 1}ITIxA
CIT,A,El={aeCT,A] : 4; =0 V1<t<T,i€FE}
Then:
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Proposition 3.3.2. We associate in a unique way to each a € C[T,A] an
open subset A, (z) of Xn such that:

o Ay(z) N Ay (z) =0 if o # o
o mM(UAL(2)) =1;

o There ezists A C Xy with m*(A) = 1 such that for all a € C[T,A], FY
is one-to-one from A,(x) onto A. We denote FA_Z its inverse.

Moreover:

1 .
{yEXA : dz(Ft(x),FX(y))<m VO§t<T,2€E} C U A, ()
a€C[T\A,E]
(3.30)

Proof. We define:

T-1
A= (F'"oG(A)
t=0
to avoid any problem of definition (m”(A) = 1 by preservation of total measure
by Fy and G, and by finite intersection) and

Fra=Figa0)0G 0 Flyqy0G om0 Fry yoG™!

0,0,a(0,- 0,L,a(1, 0,7—1,0(T—1,-
which is well defined on A. All properties are then easily deduced from those
of Fy, 4's with:

Ao(z) = Fy o (A)
= F " (Aiaen) [V F7(A)

O

Remark: 1. Au(z) can be really complicated sets, due to the perturbation
term G and the non compatibility of inverse branches. But we avoid problems
using the contraction property as described in Lemma 3.3.1.

2. In fact, this construction (except the inclusion 3.30) requires only the local
Markov structure of expanding maps and the bijectivity of the coupling.

Notation: In the following, when o € C[T,A] and 0 < ¢ < T, the notation
FA_ZC denotes in fact F ‘o FA_Z, so that:

F&i - FOT’II’—t,a(T—t,-) oG lo F/;fjl (3.31)
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3.3.3 Expanding property

We can then use the weak coupling assumptions and the inverse branch analysis
of F, to get a sharp form of the preservation of the expanding property when
we replace Fy by Fj:

Proposition 3.3.3. Suppose that F satisfies Assumption (H2), y € A satisfies
di(F"(x),y) <6 for anyi € E C A, and that a € C[T, A, E|. Then:

5 .
d; (FT~4(x), F{l(y)) < S 9iGEY)  yo<t<T,ieE  (3.32)

where A = % and @, M, K and 5 = v— MKy are defined Section 3.1.2.

Remark: This Proposition gives a complete decoupling of temporal expanding
property and spatial weak coupling, uniformly in time and space.

Proof. We know that G is invertible, and by the estimate (3.5) on the coupling
and the triangle inequality, we have for y, z € X, and i € A:

di(y, 2) < di(Ga(y), Ga(2)) + €Y 0°Fdy(z,y)

then for each 1 <t < 7T and 7 € A:

di(Gyt o F'™" (), GY' o FrH (y) < (7" (2), Fi i (v))

+& ZQQnik'dk(GXl o FT*H-I(‘T)’ GXI o F[;Zf—l(y))
keA

For the inverse of Fj, we can use Lemma 3.3.1, with the permutation ¢ = Id
because one of the points is on the orbit of z, to get for all i« € E (because
a € C[T, A, E]):

1 - - _ - - -
GG o T (), Gyl o By (M (y)) < di(FT ' (2), Fy 4 (v)

’

< LGyt o FT1(2), G o Fyit(y)

Yo%

2

Combining these two estimates gives for any 7 € F and 1 <t <T:

P @), Py ) € (P71 @), By 7 )
+ MT‘gZe?ikdk(FTt(x),FA,g(y)) L ME D 0P (3.33)

kEE v kEA\E
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We want now to go from this time to time estimate to a global one (in time
and space). We will estimate this term from above by a double sequence which
can be entirely solved by a generating function method.

We do this with an analyze of the behavior of all points at a given distance of
EC€. With E® as defined in Section 3.7, we denote for 0 <t < T and i > 0:

v(i,t) = sup dj(FT’t(:c),F/;fl(y))

JEE(-Y)

(and v(i,t) = 0 if ECY) = )
If j € ECY, for any 0 < k < 4, we have the inclusion j + A, ¢ E® 9 C E
then (3.33) becomes for t > 1:
d;(F"~"(z), Fo(y))
1

< _dj(FT—H—l(x),FA—,ZH( ZZGZMd FT t( ) FA_,ta(y))
v k=0 |I|=k
ZZHZ'”
k>i |l|=k
1
< —w(i,t—1) +—2202”|v kt+—2292‘”
v k=0 |I|=k k>i |l|=k
Hence for: > 0and 1 <t <T:
1
v(i,t) < =v(i,t—1) axv(i — k,t) + 3.34
(i) < Z k DI LY

with ay = MEch?* and ¢, = Card(l € Z¢ : |I| = k). We define then, for
6 > 0 the double sequence:

ife <0
ifi>01t=0
u(i,t —1) + % S 2ksoaku(t — k,t) if1>0,2>0

u(i, t) =

~.2|r—i S N

We have the following upper bound for v:

Lemma 3.3.2. If v(i,t) satisfies recursive relation (3.34), sup;5ov(i,0) =
v(0,0) <6, and if ap/v < 1, then:

v(i,t) <u(i,t)  Vi>0,t>0 (3.35)
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Proof. By induction on ¢, then on i, because 1 — /v > 0 and:

1
(1—@)v(i,t)§— zt—l Zakvz—kt Zakuz—kt
Y

k>z

O

The fact that ap/y < 1 is a direct consequence of the assumption (H2)
because ap < > o = MKy < MK < . (H2) implies also that assumptions
of Proposition 3.9.1 are satisfied with oy, and & = M&c,0*. This Proposition
and Lemma 3.3.2 imply:

)

2+1
7(7—MIC2)t+)"0+

v(i,t) <

Optimizing for any j € E, since j € EC4E)T)  we get the desired estimate
(3.32). O

We can evaluate in the same way the effect of a change of finite box re-
striction on the inverse iterates of the map:

Proposition 3.3.4. If F satisfies Assumption (H2) then for any y € A, there
is a bijection ¢, : C[T,A\, E] — C[T, A\ E| such that y — ¢, is measurable,
and for all o € C[T, A, E]:

AE,py(a)

d; (F/;a( ), F=t (y)) <A-9UE)  yo<t<T,icA\E (3.36)

Proof. For the coupling, we have exactly the same type of estimate as in the
context of Proposition 3.3.3 for any i € A\ E:

(G (v), Grp(2) < di(y,2) +€ Y 67 Hdi(y, 2) + ‘;Z@“‘k (3.37)

keA\E kEE

The inverse branches of Fy are constructed in Subsection 3.3.2 independently
on each site and around the orbit of z. Since Fj(z) = F}, z(z) = F*(z), these
inverse branches are in fact independent of the finite box. We can then use
the same method as in the proof of Lemma 3.3.1 to choose inverse branches
such that the contraction property applies well to pre images of y.

At first step, we compare for i € A\ E the relative positions of the points

Gy (W), (GX\IE(y)>i and (Fy o FT '(z)), —1/2 to define the action of ¢, at
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time 7" — 1 (see Figure 3.1 in the proof of Lemma 3.3.1) such that:

1 -1 -1
2 (G (4), Grls))
< di (F 07— 1a(r-1,) © G (0 Fo i gy @y, © GK\IE(@’))
1 ~1 ~1
< i (G W), Gale )

Then, if ¢, is well defined for times greater or equal to T'—t+1, we compare at
each i € A\ E the relative positions of (G};" o Fy o (1)), (GX\IE o FA_\t;la(y))
’ i

(6%

and (Fpo FT_t(x))z. — 1/2 to define the action of ¢, at time 7" — ¢ such that
for all & € C[T, A, E|:

1 1t -1 —t+1
Mdi (GA o Fy o (y), G ° FaEp, (o) (y))

<d; (F()_Jl“—t,a(T—t,.) 0Gy'o F/\_,?l(y)’ FO_Jl“—t,wy(a)(T—tr) ° GX\IE ° Fg\t]‘g;(y))
1 _ _ _ _
< L4, (65 o Pty (), Gl o Pt )

We get in the same way as for Lemma 3.3.1 that ¢, is a measurable function
of y.
This gives then, combined with (3.37), for any i € A\ E:

_ _ 1 , _
di(FA,Z(y)a FA\tE,cpy(a) (v)) < —dz‘(FA,fo(y)a FA\tg,lapy(a) ()
ME i _ _ ME i
+— > PP (), Pl gy W) + 5 D07 (3.38)
T kenm T ke

2

We can hence proceed as in the proof of Proposition 3.3.3, with:
oiit) = sup di (Fib(y) Falppyi®)
JEA\(ED)

and 6 = 0. O

3.3.4 Expansiveness
A first consequence of the expanding property 3.3.3 is the expansiveness of the
dynamical system (F}S):

Proposition 3.3.5. If d,(S% o F'(z),S" o F'(y)) < 6o = 557 for alli € Z* and
t €N, then:
=y
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Proof. The inclusion (3.30) and the Proposition 3.3.3 can be combined to get
that under assumption (H2), if d;(F}(z), Fi(y)) < & for all 0 < ¢t < T and
1 € E, then we have in fact the better estimate:

B i BC
d; (Fi(2), Fi(y)) < i + ). ALET)

We can then take A = Ay and N tends to infinity which gives the same
property for the global map F. But the assumption done for this Proposition
clearly implies that d;(F'(z), Ft(y)) < d, for all i € Z¢ and t € N, hence:

6 i C

for all E C Z% and T € N. taking E = A,, then T and n going to infinity, we
can conclude that z = y. O

A classical and essential consequence of this property is that the metric
entropy h(r,s) associated to the system is an upper semi-continuous function of
the probability measures (see Proposition 3.8.1). This (and the continuity of
the potential function ¢) proves that the rate function I of the Large Deviations
Principle defined in (3.14) is lower semi-continuous and allows to use the Gibbs
variational principle for the proof of the Upper Bound.
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3.4 Proof of the Volume Lemma

We begin by proving an intermediate Volume Lemma for the finite box map
F) with constraints on the orbit on the smaller box FE, then use it to prove
Theorem 3.1.1 for the global system (F,S).

Proposition 3.4.1. Under assumption (H), forz, ECA, T and 0 < § < 5
as in Section 3.8 with A large enough, we have:

exp ( 3" poSio Fl(x) — T|E|Cy(T, E,8) — Ca(A, T, E))
0<t<r
1€

<m*{y: d;(Fi(z),Fi(y)) <6 VO<t<T, ie€FE}
< exp ( 3" poSio Fl(x) + TIE|Cs(T, E, ) + Cs(A, T, E))) (3.39)

0<t<T
1€ER
with:
Jim Cis(AN,T,E) = Jim Cs(An, T,E)=0 VT >1, ECZ® (3.40)
— 00
. . 1
71311;10 CQ(T, E,,d) = Th:;ngo Cg(T, E,,§)=0 Vo < Y (3.41)

for any sequence E, tending to Z% in the sense of Van Hove. Moreover Csy and
C5 are continuous in 9.

The essential idea to prove this result is to do a change of variable by FY.
This must be done with some precautions to ensure we are on domains where
this map is injective and to analyze all the terms.

3.4.1 Proof of the Upper Bound of Proposition 3.4.1

We decompose X in the subsets (Aq(2))4ecir a7, 0N €ach of which FT is one-to-

one. It has to be noticed that we do not lose anything because m* (UA,(z)) = 1
and that since § < ﬁ the intervals which appear are those corresponding to
C|T, A, E] (see Proposition 3.3.2 for these properties):

m*{y € Xy : d; (F'(z),Fi(y)) <6 VO<t<T,i€FE}
= Y mMyeA): di(F'(z),Fi(y)) <6 VO<t<T,i€E}

a€C[T,A,E]

1 A
- ¥ /X 1 Yo (erereson<s Tommergy ™ @) (342

a€C[T,A,E] A 0<t<T
=)
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by a change of variables with F{, bijection from A, (z) onto A.
We apply then the results of Section 3.2.2 to get:

1
- =exp | — log |[DF) pi(z) o Fi I(y)|
DEL(Ft ()] ( 2 o

0<t<T

= exp ( Z (—log|fi| +way) o Ff\,—aT(Z‘/))

0<t<T
ieA

where we denote wy; = wy pi(y),; for any ¢: we don’t mention the boundary
conditions since all our estlmates are uniform in them.

We treat differently the terms corresponding to i € F and toi € A\ E. In the
first case, we want to replace them by ¢ o S’ o F(z) while in the second we

want to reconstitute D(FA_\TI:J oy() (y)) and integrate it to 1 by another change
of variables on Xy g.

Hence, if 1 € E:

[(—log | fi| + wa,) o FY [ (y) — oS o F'(x)]
<|log|fi| o F [ (y) —log|fil o F'z)| + w0 F ] (y) — was 0 F'(z)]
+ |wa,i 0 F'(z) — 1 o F'(z)|

The third term is easily estimated by the speed of convergence of wy; to
given in (3.25). Summing over all times and sites gives

D Jwago F(z) — s 0 F'(x)] < ZedU A9 = C5(A, T, E) (3.43)
; 2 1—
0<t<T zEE
icE
then we get Cs5(Ay, T, E) — 0 when N goes to infinity.
For the two other terms, we use the fact that d; (F7~(z), F }(y)) < ¢ for all
0 <t <T and 7 € F which implies with Proposition 3.3.3 that:

b
d; (F"'(z), FyL(y)) <7—+)\ gierY)  yo<t<T,i€E

This combined with the a-Hélder property of log |f'| (see (3.2)) and the con-
cavity of z — x® gives:

| | > [log|f{l o F{(y) —log |fi| o F'(x)|
0<t<T
icE




76 3. Spatiotemporal Large Deviations Principle for Coupled Circle Maps

which goes to 0 as T tends to infinity and E tends to Z¢ in the sense of Van
Hove, because 7 > 1 and 1/|E| ¥, ,, 0%%F) goes to 0 by Proposition 3.7.1.

For wy 4, we use estimate (3.20) and get, with /0 = Y. 74 g2kl
[wai o Fia (v) = wAz' o Fi(z)]

< g Zo'l Mdp(FE ) (v), F'(x))

kEA

< MK ¢ n )\M’CI/ZO%d(i’EC)—i- ME ) Z e\ifk\

= 1 _[(Aat-T _ —
1 ’C7 1-K 2(1 K keEC
Then : | Z |wa; 0 F}iaT (y) — wa,; 0 F'(z)]
o
MK 6 1 MK /2 ( ) (i,EC
< 220 LI ~ 4 9290:EY) (3 45
1—-KT oS ’}/FT 1—-—K ‘E‘ Z ( )

which goes also to 0 as 7' — oo and E — Z2.

In the same way, for i € A\ FE, we use the link between behaviors of Fﬁ’aT(y)

and Fi\gw (a)( ) given in Proposition 3.3.4:

[(=log [ fi| + waq) 0 Fy g (y) = (= log | fi| + wagi) © Fyip 4, ) (V)]
< |log | filo Fx7y () —log | filo Fxig (o) ()| Fwnio Firy () —wnymao Fiy ()]
+ [wavmi 0 Fyly (y) — wam, © FA\E o) W)

and, using Proposition 3.3.4 instead of Proposition 3.3.3 and estimate (3.22)
instead of (3.25):

3 [loglilo FET ) =108l 0 FiE 0] < Crogr 3 07407
‘ 0<t<T | |ZEEC
iEA\E

(3.46)
1 1 .

wy ;o F wangioFL T(y)| < ———— Y " 940 (347

|E| > lwaioFy ) (y)—wapao A,a<y>|_2(1+,c)|E|iEZEC (347)

0<t<T
iEA\E

E |wA\E‘ i ( ) WA\E,i © F/txig,cpy(a) (y)|
0<t<T
iEA\E

)\M/C 1
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all these terms tending to 0 when E tends to Z? in the sense of Van Hove by
estimate (3.58).

We take finally for C3 the sum of RHS in formulas (3.44), (3.45), (3.46), (3.47)
and (3.48) and get the global estimate:

1 1
<
IDF{(E L)~ IDES o (Frl oy @)
X exp ( Z oS o Fi(z)+T|E|Cs(T, E, ) + Cs(A, T, E))

0<t<T
icE

On the other hand, we get an upper bound for the product of indicator
functions in (3.42) by the terms corresponding to ¢ = 0, and use the identity:

1 1
Z T T~ Z T o T
Q€C[T,A,E] DF o Fy. Apy(@)  aeC[T,A\E] DF o FA,a
do to the bijectivity of ¢, from C[T, A, E] onto C[T,A \ E]. We can then
separate the terms in E and those in A \ E and integrate the last ones by a

change of variable:

m*{y € Xy : d; (Fi(2),Fi(y)) <d VO<t<T,i€E}

1 mA\E
<J.. X 5 T

ME oeC[T,A\E]

x mP{y : di(FT(z),y) <6 Vi€ E}

X exp ( Z poS o F'(z)+T|E|Cs(T, E,d) + Cs(A, T, E))

0<t<T
1€l
= mA\E( U A, ( )) (25)\E\
a€C[T,A\E]
XeXP( Y ¢oSoF!(z) +T|E|C5(T,E,8) + C5(A, T, E))
OﬁtéT
S

m* {y € Xy : d; (F{(2), F{(y)) <0 VO<t<T,icE}
<exp( Y poSio F(a) + TIEIGH(T. E.6) + Co(A, T, E))

0<t<T
icE
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where C3 = C3 + 7+ log(26) satisfies the announced limit.

3.4.2 Proof of the Lower Bound of Proposition 3.4.1

For the lower bound, we use the same kind of estimates that for the upper
bound, except for the term

H ]l{di(FA‘,B(FT(w)),FA‘,g(y))<6}
0<t<T
i€l

Indeed, to insure this, we have to assume that d;(F7(z),y) < d for i in a set
larger than E: we choose L such that

§+A-9L§5
5

and assume that E(*) C A (this is the sense of A large enough in Proposition
3.4.1).

Then, if d;(F”(z),y) < 6 for all i € E(Y)| Proposition 3.3.3 implies that when
a € C[T, A, ED):

di (F™!(2), Fy (%)) < = +A-010ED  vo<t <7, ie B®

and in particular
di (FT Hx), Fyt(y)) <6 VO<t<T,ieE

The assumption o € C[T,A,E(L)] imposes then to restrict the sum in the
decomposition of Xy. This does not perturb the asymptotic estimates because

7|E(CE)|\E‘ — 0 when F tends to Z% in the sense of Van Hove. Then:

m*{ye Xy : d; (Fi(z),Fi(y)) <0 VO<t<T,i€E}

>y / I Yaewr@w<s

aeC[T,AED] Y A e p()

xexp (S0 (—log f] +wn) o FET(y)) m(dy)
OStXT
S
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>0 Aele))mP Py d(FT (), y) <5 Vi€ BD)

a€C[T,A\E(L)]
X exp ( Y poSio Fla) — TIED|Cy(T, EM,5) — Cs(A, T, E<L>))
0<t<T
iceE@)
>exp (Y 9oS o Fl(w) = T|EICy(T, E,8) — Cy(A, T, E))
0<t<T
el
where o
2 |EW)] [EW N\ E|
Cy(T, E,6) = Cs(T, ED),6) + ———¢|oo
|E| Bl

tends to 0 as T goes to infinity and E tends to Z? in the sense of Van Hove,
and Cy(A, T, E) = Cs(A, T, D).

3.4.3 Proof of Theorem 3.1.1

We approximate F' by Fj, using convergence on a finite box for finite time:
forany 0 < e < ﬁ — 0, there exists Ny such that for all N > Njy:

di(Fi,(y), F'(y)) <e VO<t<T,icEandyeX
05(ANaTa E) S g

We deduce then from the upper bound of Proposition 3.4.1 applied to Fjy:

m(By(T, E;0))
<m{yeX:d;(F'(z),F'(y)) <d VO<t<T,i€E}
<m*{ye Xy, : d;(Fi (2),Fi (y) <d+e VO<t<T, i€E}
< exp ( Y @08 oFi(z) + T|E|Cs(T, E, 6 +¢) + Cs(An, T, E))

0<t<T
i€E

We take then N — oo, ¢ — 0 and use continuity of Cs in § to get the desired

upper bound with C5 = exp(T'|E|C}).

In the same way, for the lower bound, let L be such that 1 Pt <5<
and for any 0 < & < § let Ny such that for all N > N:

{d J(FL, (), F'(y))
Ci(Ay, T, ED) <

l
2 1

<e VO<t<T,ic EDandye x
g
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Then:
m(B.(T, E;9)
di(F'(z), F'(y)) < 6 VieE,
di(F'(z), F'(y)) < 6p~" Vie EM\E,
_mly ('() (y)) < dp | \ V0<t<T

di(F(z), Fi(y)) < 0p~ L Vie ED\ pE-D),
m{y €X :d; (F'(z),F'(y)) <6 VO<t<T, i€ E(i)}

v

v

mAy {yEXAN - d; (FL (2),FL (y)) <0—¢ vogth,ieE@)}

AV

exp ( 3" poSioFi(z) — TIED|Cy(T, BV, 6 — &) — Cu(An, T, E@)))
0<t<T
icE
We get the desired lower bound with Cy = exp (T|E(i)\(i’2(T, E@), 5)) when

tends to 0. The only dependence of C; on the constant p defining the distance
comes from the choice of L.
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3.5 Large deviations upper bound

Our proof of the upper bound of the large deviations principle follows, at
least for the main steps, the method of Kifer in [71]. It presents no particular
difficulty since the space M!(X) is compact for the weak-* topology, i.e. the
weakest topology for which the evaluations v — [ gdv are continuous for any
g € C(X). The Volume Lemma gives the identification of the log Laplace
transforms.

For E; a given sequence of subsets of Z?, we denote:

1
RT(IE) = RT,ET(-T) = @ Z 5510Ft($) € MI(X)

the associated empirical process.

3.5.1 Identification of the pressure

The first step in this proof is the identification of the limit of the log-Laplace
transforms of the empirical process Ry integrated against any continuous po-
tential V' with the topological pressure of V + ¢ (see Section 3.8.3 for the
definition):

Proposition 3.5.1. Under assumption (H), for any sequence (Er)r>o tending
to Z% in the sense of Van Hove and V € C(X), we have:

lim sup

1
]og/ exp (T‘Eﬂ/ VdRT(:E)) m(dr) = P(F,S)(V-FQO)
Tooo 1|E7| x x

(3.49)
Corollary 3.1.1 is immediately deduced from this Proposition, taking V' = 0.

Proof. For § > 0 and T > 0, we take Y a maximal (7, 0)-separated set in X,
which means that:

z, 7' €Y and x # ' = 2’ & B,(T, Er;9)

and Y is maximal for this property.
Then Ugey By (T, Er; §) = X by maximality and if z,z" € Y are distinct then

Bu(T, Br:8/2) 0 By (T, By;6/2) = 0

Hence, denoting vy (6) = sup{|V(z) — V(y)| : d,(z,y) < 0}, a quantity which
goes to 0 with § by continuity, we decompose the integral in small balls and
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get:
Y exp ( Y (VoS'oF!(z) - W(é/Q)))m(Bw(T, Er;6/2))

tEET

< [ e ( X VesioF (@) mid)

0<t<T
ZEET
<Y exp ( 3 (VoSioF!(s)+ VV((S)))m(Bw(T, Er:6))
z€Y 0<t<T
e b

We use then the Volume Lemma to get:

Ca(T, Er,8/2.) | D exp (2 (V+¢)o 5 0 F(2) = w(5/2))]

< / exp (T|ET| / VdRT(:r)) m(dz)

< Cs3(T, Er,6 [Zexp( Z V-i—(p)oSioFt(x)—i-’yv(d))]

€Y 0<t<T
1€EET

We take know the logarithm of each term, divide by T'|Er| and take succes-
sively the supremum on maximal (7', §)-separated sets, the limsup when 7" goes
to infinity (makes the terms Cy and C3 disappear) and the limit 6 — 0. We get
hence the desired result directly from the definition of topological pressure. [

3.5.2 Proof of the upper bound

For § > 0 and V € C(X) fixed, M'(X) is compact and any closed subset
F can be included in a finite union of balls of the type B,(V;d) = {u :
| [Vdu— [Vdv| < b}

d
Fc|JBu(V;6) withyeF (3.50)

=1
By the Chebychev inequality:
m{z : Ry(z) € B,(V;6)} < eMPrl0-Ja V) / TIBr|Rr(=) 777 dr)
X
then, using Proposition 3.5.1, we have for such an open ball:

lim sup ———

logm(Ry € ,(V;6)) < 6 - / V dv + Py (V + )
T—o0 T|E | &
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The inclusion (3.50) implies now for F' closed:

1 1
. _ < : _ '
h;n_)solip TTEy logm(Rr € F) < max, (hqqisip By logm(Rr € 5,(V; (5)))
< max (5—/ le/-l—P(F,S)(V-I-gO))
veF x

We can then make § tend to 0, optimize on V' continuous and use a minimax
type result (available because F' is compact) to get:

I log F) < inf (P -
msup 7 logm( Ry € F) < max (vérclm ( ) (V) /XV dV))
= s (- [ o)
veFNML (X) X
=~

where we used the dual Gibbs variational principle (because h is upper semi-
continuous, see Section 3.8) for invariant measures, and the fact that if v ¢

M (X)),

inf | P \% — Vdv ) =—-o00=—-1(v).
VéICl(X) ( 75V +¢) /X V) o0 (v)
(We check it taking V,, = a(goF"0S*—g)—¢ with g such that [, goF'oS" dv #

Jrgadv.)
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3.6 Large deviations lower bound

The large deviations lower bound is a local property in the sense that it is
equivalent to prove for all open set O such that v € O:

lim inf

it logm{z : Rr(z) € O} > —I(v) = hyps)(v) —|—/X<pd1/

or, equivalently:

lim inf

nint g 0B T(r  Re(e) € B(Vis Vs 0)} 2 g () + [ v

x
forallv € MY (X), Vi,...,Vk € C(X) and § > 0, denoting 3,(V4,..., Vk;d) =

{w | [y Vedu— [, Vidv| <6 V1< k< K}, because this gives a basis of
the weak* topology on M'(X).

The idea for the lower bound is a geometric estimate, which comes from
[105] and is better expressed for an ergodic probability v: we decompose the
set {x : Rr(z) € B,(Vi,...,Vk;06)} in small balls B,(T, Er;0). We need
approximately e1Zrlhw.9H®) of them (by Proposition 3.8.3) and each is ap-
proximately of size e(TIEr/Jx¢@) ynder 7 (by the Volume Lemma and the
Ergodic Theorem 3.8.1).

We will write it directly for convex combinations of ergodic measures. We
need for this a strong mixing result, the Specification Property. We obtain the
general case by an approximation argument.

3.6.1 Specification property

This strong quantitative mixing property is again a consequence of the preser-
vation of expanding property.

Proposition 3.6.1. If F' satisfies (H2), then for all § > 0, there exists p(d) €

N such that for any T,..., Ty, €N, 2',..., 2t € X and p1,...,pr_1 > p(9),
there exists x € X such that:

d(F'(z), F* (z)) < 6 <

d (F©iP(z), F* (2°)) < 6 Vo<t

d (Ft+zf:<Tz+m>(x), Ft (xL)) <4 VO<t<T
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Proof. We work in this proof with the global map F' and the topology associ-
ated to the distance d(z,y) = sup;czad;(z,y). Let

Vo(T50) = {y : d(F'(2), F'(y)) <6 Y0<t<T}
be the dynamic neighborhood around the orbit of z. We want to show that:
Vi (T1;6) N F~7P (Vo (Ty; 6)) N - - - 0 B~ Zi T4e) (V4 (T3 6)) # 0

By a simple induction argument, it is sufficient to show that for all z € X,
T>0,0<6< 5=, p>p(d) and A such that Int(A) # @), we have:

Vi(T;6) N F~T7P(Int(A)) # 0 <= Int(FT(V,(T;6)) N FP(A)) #

We can proceed as in the proof of Proposition 3.3.2 in the infinite dimen-
sional case to get that for any «a € C[T,Z% = {0,...,p — 1}H-Tx2% there
exists A, (z) defining an infinite open partition of X (UA,(z) = X') such that
FT is injective on A, (z) with inverse branch F,T.

As in Subsection 3.3.2, if § < 537 then V,(T;6) C Ag(x) and F(V,(T;9)) =
{y : d(F"(z),y) <d}isa product of intervals of size 2§ around F7(z).
In the same way, F, © is a contraction around the orbit of x:

d(FT(), Fy'(y)) < %d(F%), v)

Then, if we construct the inverse branches of F? around the orbit of F7T(z),

we know that almost all points of X have a pre-image by FP at distance less

than o1 of F'(x) (because F, ” is > contracting). We choose then p(é) such
7 7

that ﬁ < 26 and get the Specification Property. O

3.6.2 Proof of the lower bound
Ifl/ € MIHV( )

In this case I(v) = 400, hence there is nothing to do.

Ifv = Zle av; with v, € Mérg

(X), aIZOanleLzlalzl
Forn>0,T21andany1§Z§L,Wedeﬁne

6’Loi
[a/T|Er| H Er| 2. Sser

0<t<[a;T]
ZEET

Ry(x) =

It = {x : Ri(x) € B,(Viy ..., Vi; 5/4) and/ e dRL(z) > /(pdyl }

X
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Then by application of the Ergodic Theorem (Theorem 3.8.1), we know that
v (T}) goes to 1 as T tends to infinity. Hence, for a fixed 0 < b < 1, we choose
Ty such that for any T'> Ty and any 1 <[ < L:

() >b (3.51)

Using Proposition 3.8.3, we take €y and 7 such that for all e < g and T > T7,
then for 1 <[ < L:

1
—— log NY[ayT]., E7.e,b) > h — 3.52
a1 Eyr] og N'([a,T), Ex,e,b) > hs)(v) — 1 (3.52)

where N! denotes the number of balls necessary to cover a set of v, measure b
(see (3.60) for the precise definition).

Let now ¢ < ¢ and T > max(Tp,T1). We can then choose for 1 < [ < L
a set S5 C TY. which is maximal ([a;T], Er, 4¢)-separated in [';.. Hence, by
maximality, we have

T ¢ | Buo([aT, Er; 4e)

zesk,
and this gives, combined with estimates (3.51) and (3.52):

Card(S}) > exp ([a/T]|Er|(h,s) (1) — )

We use now the Specification Property (Proposition 3.6.1) to construct from
these sets Sk a set St of points which are typical for v. Indeed, for any choice
of 2t € Sk, 2% € S2, ..., 2L € SE, there exists a point which e-follows the
orbits of each z! during time [a;T], precisely:

d, (Si o FEn2olenTI+(-Dp(E)+ 2y Gi g Ft(a:l)> <e V0<t< [T, i€ Z°

Let St be the set of all such constructed points: as S& are ([a,T], Er,4€)-
separated, then all constructed points are distinct, hence:

Card(Sr) = [ [ Card(S}) > exp (\ETI > [T (hps)(v) — n))

=1 =1

And Sy is (T, Ep, 2¢)-separated, with 7' = Y7 [a/T] + (L — 1)p(e), what
implies:
By(T,Er;e)NBy(T,Er;e) =0 Yz #yin Sy (3.53)
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We choose then ¢; such that d,(x,y) < e; implies that |¢(z) — ¢(y)| < n and
Vi(z) — Vi(y)| < 8 forall1 < k < K. For z € Sy following the orbits of
rte St x2e 82, ..., al € Sk fore <e and 1 <k < K, then

/deRT(:r)—/deu /deRT al/devz
X

<| [ vedra@) - [ Vidie(o)

X X
/Vk dRT Zaz/ Vi dR: L(FlaTT+tlaa TIH=Dp(O) (o ))‘
X

L

+Za,<

/V;cde F|—a1T-|+ Ala—1T1+({-1)p 6) /deRl

+ /deR;(xl)—/ Vi dy,
X X

<o (1= D)+ 3 (100 - ) v+ =22y 4 £

=1

and, by the same kind of computations,

[ otz [ par— 3" (TN oy - Lm0y s

=1

These two expressions, and the observation that [a,T']/T — a; and T/T — 1
as T tends to infinity, imply that for 7" great enough,

/deRT(x)—/dey
X X

The last estimate implies that if z € Sy then Rr(x) € 8,(V4,..., Vk; 3?‘5), and
also, with previous estimate on Vj:

30
< =
— 4

/godf?,T(x)z/@dV—?)n and
x x

Bm(T, Er;e) C By(T,Er;e) C{y : Rr(y) € B,(V1,...,Vk;0)}

We associate this with disjunction of such balls stated in (3.53), the lower
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bound of the Volume Lemma and estimates for the cardinal of St to get:

m{y : Rrly )eﬂ,,(Vl,.. ,Vic; )}
> Y m(B,(T, Erse))

TEST

> Y Co(T, Er,e, p)exp <T|ET|/ ¢ dRy( ))
TEST
L

2@@ﬂ%ampr%Q:Mﬂmmﬂm—m+TWﬂ/ww—&o
X

=1

Then:

1
liminf —— logm{y Rr(y) € B,(Vi,-.-, Vk;0)} > hr,s)(v) +/ pdv —4n

because %Zle [T hr,s)(v1) tends to hps)(v) and % to 1 as T goes to in-
finity. It suffices then to make n go to zero.

Ifv e M}HV( )

We want to approximate such a probability measure by 7 = ) q;; from the
previous case with a good control on the entropy. For this we take n > 0 and
fix £ such that:

| [y Vidn = [ Vidn| <§ VI<k<K

diStMl(X)(Tl,TQ) <& =
| [yedn— [, edn| <n

We choose then P = {P,,..., P} a partition of M!(X) with diameter less
than €. We know by the ergodic decomposition theorem (Theorem 2.3.3 in
[66]) that there exists a probability @ on M!(X) concentrated on M. (X)

erg

and such that v = fMl(X)TTr(dT). We take, for 1 <[ < L, ¢ = w(P,) and
v € P € Mg, (X) such that hs)(v;) > hr,s)(7) — 7 for m-almost all 7 € P
Then, with 7 = 21:1 a;v, we have:

hr.s)(7)

> h
/wwz/¢w—
By

Bﬂ(‘/lu" VK75/2 ‘/la" VK’ )



3.6. Large deviations lower bound 89

This implies

liTrgicgfﬂET‘ logm(y : Rr(y) € Bu(Vi,...,Vk;0))
.. 1 _
> lim inf 15| logm(y : Rr(y) € Bs(V1, ..., Vk;0/2))

> hips) (V) + / edv > hps) (V) + / odv — 2
X X

and we conclude making ¢ then 7 tend to 0.
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3.7 Convergence of subsequences of Z*

We introduce in this Section two different notions of convergence for subsets
of Z¢, and their main properties.

Definition 3.7.1. A sequence (Ey,)n>0 of finite subsets of Z° tends to Z* in
the sense of Van Hove if lim,, , |E,| = o0 and

(B + DAE,|
R

(where A denotes the symmetric difference of sets, AAB = (A\ B)U(B\ 4))

=0 Viez! (3.54)

If E is a finite subset of Z¢, we define enlarged and restricted sets in Z¢ by:

"\ : d,EC) > —i} fori<0 ‘

We have then two properties of sequences tending to Z? in the sense of Van
Hove:

Proposition 3.7.1. If (E,), -, tends to Z in the sense of Van Hove, then:

1. Foralli € Z, (E,(f))n20 tends to Z% in the sense of Van Hove and

1i =1 3.56
n0o | En\ (3.56)
2. Forall T <1
lim — > FAER) = 0 (3.57)
n—00 ‘En| =
3 ForallT <1
lim — D b =g (3.58)
n—00 ‘En‘ e

Proof.
1. For 7 > 1, we have:

E,Cc EW = U (B, +1)
lEA;

such that B \ B, = Uen, (B, + 1) \ E,, hence:

B %) \ By [(En +1) \ En|
1< =1+" 1< — 1
| Enl | En| *2 | Enl n—o0

lEA;
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by definition of the convergence in the sense of Van Hove (see Definition 3.7.1).
In the same way, (Eﬁf) +k)\ EY Uen; (Bn + 1+ k) \ Ep, then

(B + k) \ B |E|Z|E TR\ E]

We proceed similarly for EV \ (EY + k) =k + (E — k) \ EY, and get that
EY tends to Z® in the sense of Van Hove.

For 4 < —1, we have the description:
E{= () (E.+1)CE
leA_;
and computations are similar to those for 7 > 1.

2. For any € > 0, we choose k > 0 such that ) .., 7" < ¢/2 and write the sum

in terms of the subsets (Ey(f))is_lz

EO-0\ B0
S ) = Z\ |E\\ i

‘E |lEE i>1
k-1 1—i —i 1—i —i
S BENBD L BB
i=1 |l ik 1Bl
B N\ERTP] e
T B 2

where we used 7 < 1 in the first term and |E,(11_i) \Efl_i)\ < |E,(11_i)| < |E,| in
the second. By (3.56), the first term goes to 0, hence for n great enough:

1

| Bl I€E,

3. We use in this case the fact that Y ;o |Ai7 = Y ,0(2¢ + 1)%7° converges.
Hence, for ¢ > 0, we choose k& > 0 such that )., [A;|]T* < ¢/2 and decompose
E® in the subsets (E® \ E¢~Y),_ . Then

i— 1
S i) Z|E |\EE\ |7_z'

leES i>1

k—1
B U\E| | €
S IEL T2

\E\

since \Eff) \ E,(f_l)\ < |E,(f)\ < |As||Ey|. We conclude then as in 2. O
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Convergence in the sense of Van Hove is too wide to use some existing
results of ergodic theory, in particular the Ergodic Theorem and the Theorem
of Shannon-Mac Millan-Breiman (see Section 3.8.1). We need to restrict the
class of subsets to get the whole large deviations results:

Definition 3.7.2. (E,),>0 s a special averaging sequence if it is increasing, it
tends to Z¢ in the sense of Van Hove and there exists R > 0 such that

(with A—B={a—b:a€A be B})

We will use to apply results from ergodic theory, the following straightforward
result:

Proposition 3.7.2. If (Er)rs1 is a special averaging sequence in Z°, then
([0, = 1] x Er)r>1 is a special averaging sequence in N x Z°.

Remark: We could use some recent results of Lindenstrauss to work with
tempered sequences, a notion more general than special averaging sequences.
He proves indeed in [76] and [77] that the ergodic results we use remain valid
in this context.
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3.8 Thermodynamic Formalism

We gave already a presentation of main objects and results of Thermodynamic
Formalism in Section 2.3.1. The main modification here is that we work in
a multidimensional setup, with the dynamical system formed by F' and the
spatial shifts. Generalization of metric entropy and topological pressure to this
setup are classical. We recall them for completeness, and give formulations of
Ergodic Theorem and Shannon-Mc Millan-Breiman Theorem (proofs can be
found in [85]). We give also the proof of the metric formulation of Shannon-
Mc Millan-Breiman Theorem we use, because it is not written in the usual
literature.

3.8.1 Ergodicity

Definition 3.8.1. M, (X) denotes the set of probability measures which are
invariant under F and all spatial shifts (S*)eza-
An invariant measure v is ergodic if v(A) = 0 or 1 for any A invariant by

(F,S). We denote M., (X) the set of ergodic probabilities.

erg

The main result for ergodic measures is the ergodic theorem, valid under
some restricted assumptions on the sequence of spatial sets:

Theorem 3.8.1 (Ergodic Theorem). If v € M} (X) and (Er)rso is a

erg
special averaging sequence, then for all g € L*(v) and for v-almost all x:

: 1 % t _
jll_rgom Z goS oF(x)—/ngl/

0<t<T
i€Er

3.8.2 Entropy
For A={A;,..., Ak} and B ={By,..., By} finite partitions of X, let

AVB:{AkﬂBllngK,lglgL}

Then, for v € ML (X), Er a sequence tending to Z¢ in the sense of Van Hove,

mv

and A a partition of X, we define:

o h(v|A) = — Z v(A)log(v(A)) and Ar= \/ F~'o ST A)

AcA 0<t<T
1€ET

) 1
® hp,s)(v|A) = 7}1_>n010 mh(VMT)

o s (V) = sup{h(rs)(v|A) : A finite partition of X'}
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This last quantity is the metric entropy of v under (F,S), which does not
depend on the choice of the sequence (Er)7>o-

Proposition 3.8.1.

1. hg,s)y is convex affine: if v = Zle a;vy with a; > 0 and Zlel a =1,

then:
L

hr,s) (v) = Z ahr,s) (V1)
=1
2. For v € M. (X) and for any partition A such that v(0A) = 0 and

diam(A) < 8 = 517, we have:
hir,s)(v) = his)(v]A)

3. h(rs) 18 upper semi-continuous.

The two last properties are consequences of the expansiveness of the system
stated in Proposition 3.3.5 (see Theorem 4.5.6 in [66] and its proof).

Theorem 3.8.2 (Shannon-Mc Millan-Breiman). If v € M. (X), Aisa

erg
finite partition and (Er)r>o is a special averaging sequence, then for v-almost

all x:
_logv(Ar(z))
T|ET‘ T—

where Ar(z) denotes the element of the partition Ar which contains x.

OO) h(F’S)(V|A)

We use in our proof of the lower bound of Large Deviations a metric equiva-
lent of this theorem, which tells that for an ergodic measure, the metric entropy
describes the number of balls necessary to cover a significant set. For T" > 0,
d>0,0<b<1and (Er)r>o a special averaging sequence, we denote:

N(T, Er;6,b) = min {Card(Y) : 1/( U B.(T. ET;é)) > b} (3.60)

(see definition of B, (T, E7;0) in formula (3.10). We call a set Y as in the
definition a (7', Er; 6, b)-covering set for v)

Theorem 3.8.3. Ifv € M, (X) and (Er)r>o is a special averaging sequence,
then for all 0 < b < 1:

e e . 1
h(F,s) (v) = (155% thi)loI.}f m log N(T, Er;6,b)

- 1
= (151_1)% h;n_)s:ip m log N(T, Er; ,b)
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This result in dimension 1 is due to Katok [63]. We adapt to our multidi-
mensional context the proof from [88].

Proof. We prove this in two steps:
1.lim, o limsupy_, ﬁ logN(T,Er;¢e,b) < hwrg)(v)

For e > 0 and n > 0, let A be a partition with diameter (of each element) less
than €. We denote then:

log(Ar(2))

Cr = X
r {”“'e T|Ey|

< sy (V| A) + n}

Then, by Theorem 3.8.2, v(C7) tends to 1 as T goes to infinity. We choose Tj
such that v(Cr) > b for all T > T.

We can find also a finite covering of C by elements of the partition A7: there
exists Y7 = (2;)1<i<z such that Cr = UA7p(z;). By the choice of the diameter
of A, each Ap(z;) is included in the ball B, (T, E7;¢), and since x; € Cr, we
know that

v(Ar (1)) > exp(=T|Er|(h(r,s)(v|A) + 1))

This implies that Y7 (T, Er;e)-covers Cr, a set of v-measure b, and allows to
estimate its cardinal L by:

L
Le T1ET(h(r,s)(v|A)+n) ZV (Ar(z)) = V(UL Ap(z)) < 1
=1

Hence

log N(T, Er;e,b) < log Card(Yr) < h(rs)(v) +1

1 1
T|Ex| T|E;|

We take then limsup as 7" goes to infinity, and limits as €, then 1 go to 0.

2. lim, o liminfp_, ﬁ logIN(T, Er;e,b) > hrg)(v)

Forn > 0, we take A = {A,..., Ax} afinite partition such that A g)(v|A) >
h(r,s)(v) —n. We choose then another partition B = {By, B, ..., Bx} related
to A by:

e For 1 < k < K, By is compact and included in Ay, such that v(Ay\ By) <

n__.
Klog K

o By = X \ U By, hence v(By) < =1=.
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We can then compare entropies of v related to both partitions, using Lemma
3.2.15 of [66]:

h(r,s)(V|A) < hrs)(v|B) + H,(A|B)
v(AN B)

with H,(AB)=- Y  v(ANB)log o (B)

A€A,BEB

* U(AyN By) . v(AgN By)
log

v(Bo) v(Bo)

—v(By) <v(By)logK <n

k=1

by convexity of  — xlogx. This gives the estimate h(g,s)(v|B) > hp,s)(v) —
2n.
We define then:

log v(Br(z))
= P 7 > —
CT {.T eX T|ET| = h(F’S)(V) 3’1’]

and note that, by Theorem 3.8.2, v(Cr) goes to 1 as T tends to infinity. We
choose Tj such that v(Cr) > 1 —% forall T > Ty and € < Min{d(By, B;) : 1 <
k <1< K}. Then each ball B,(T, Er;¢) intersects at most 27'F7| elements of
the partition By, and the size of each element of this partition is controlled if
we are on Cr. Hence, for any x € X:

v(By(T, Er;e) N Crp) < 9T |Er| ,=T|Er|(h(r,s)(v)—3n)

For T > Ty and ¢ as above, let Y be a (T, Er; ¢, b)-covering set for v and
Yi={x €Y : B,(T,Er,e) N Cr # (0}. Then:

Card(Y7) > Card(Y7)

= Z +(T, Er;e) N Cr)e T|Er|(h(r,s)(v)—3n—log 2)
T€EY]
> v (U Bm(T, Er; 6) N CT) €T|ET|(h(F,5)(V)—3n—log 2)
€Y

b
> <b +1-— 5 1) exp (T|Er|(h(r,s)(v) — 3n — log2))

We optimize then on the covering Yr, and take limits as T tends to infinity
and ¢, then n go to 0, to get:

hr,s)(v) —log2 < limlim inf ——

e—=0 T—oo T|ET| logN(T, ET; & b)
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The term log2 disappears by writing the same inequality for the dynamical
system (F",S), getting:

rhps)(v) —log?2 < rlimlim inf log N(T, Er;e,b)

e—>0 T—o0 T|ET|

The desired result is then obtained as r goes to infinity. O

3.8.3 Topological pressure
Aset Y C X is (T, E; §)-separated if

v, eYx#2 = 2 ¢ BT, E;9)

It is separated maximal if it is maximal for this separation property.

We define then for V € C(X), (Er)rso a sequence tending to Z? in the sense
of Van Hove and Y C X finite:

Pirs)(V;T,Y) =log ) exp ( > VoSo Ft(:r)>
€Y 0<t<T
1€Er

Then 1
Prrg(V) = limli —— sup{Ppo(V:T,Y
(r,5)(V) = lim m SUp 7 sup { P(rs) ( )}

where the supremum is taken over all sets Y which are (T, E7;d)-separated
(or, equivalently, (7, Er;d)-separated maximal), is the topological pressure of
V for the dynamic of (F,S). This definition is independent of the choice of
the sequence (E7). The main result for this quantity is the Gibbs Variational
Principle, which expresses it as a variational expression of the entropy:

Theorem 3.8.4 (Gibbs Variational Principle). For any V € C(X):

Prg (V)= sup (h(F,S)(v)+ /X Vdu) (3.61)

and, since h(p,s) is conver affine and upper semi-continuous in our case, for
any v € Mj, (X):

hirs)(v) = inf (P(F,S)(V)— /X de) (3.62)

vec(x)
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3.9 Generating function method for the iteration sequence

For § > 0, v > 1 and (aj) a sequence of non-negative reals, let u(i,t) be
defined for + € Z and t € N by:

ifi <0

ifi>0,t=0  (3.63)
Su(t, t—1)+ D kso kuli —k,t) ifi>0,2>0

u(i, t) =

|H ST

We have then for such a sequence:

Proposition 3.9.1. Suppose there exists 6 < 1 such that for any k > 0,
o, = 0Fay and denote S = Y, ., and S = Y k>0 k- Then, under the
assumption - B

y—S>1

we have for alli >0 and t > 0:

u(i, t) <

T S R
(v — 9)t 2y —S5—1)
Proof. We solve this equation by a generating function method (see [104] for
a general introduction and many useful tools). Let f(z,y) be the formal series

defined by:
Fay) = 3 uli, Haty’
=

(3.64)

Then the inductive definition of u(i,t) implies for f:

f(:c,y)zZ(i u(i, t —1) Za,mz—kt):ry

z;(l) lc>0
t
592 + 1Y utityaty+ Z(Zauz—kt )
) k
=T e
1 .
522 (Xan)ay
/Yz>0 k>i
t>1
_ 9y
Z +—ZRx“yt+ (y+Zakx) z,y)
>0 z>0 k>0

t>1
-1

k>0

- (T —szxl——(sz))
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where R; = ), ., o. We invert formally this expression, using that:
1
(3 e) =S () (S ew)
v k>0
ut1y 1 Ltk
=2 U DR

u>0 k1,...,k>0
1>0
u+1l\ 1
P— LI n u
—Z(Z( Nor T ana)ary
TLZO lZO kl,...,klZO
u>0 k1 +-t+ki=n

Hence, using in the upper bound that R; , < 0i"t1S we get:

U(i,t)=éi(2(t;_1;rl)ﬁ ) @kl"'akl>

i 1>0 1,k >0
ky+--tki=n
1 u+l) 1
g 2R ) 2 )
v 0<n<i 1>0 u ;0 k1, k>0
0<u<t ki+-+kj=n
§ t—1+1 Lot u+1
<2 (6 o
1>0 w0 | >0
(v = S) 2y —S—1)

O

Remark: We obtained in fact in the course of the proof an exact (but compli-
cated) expression for the sequence u .
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4. LIMIT THEOREMS FOR COUPLED ANALYTIC MAPS

We work in this Chapter® with coupled map lattices with local expanding maps
on the circle and weak coupling. We need to assume strong regularity: the
local maps (resp. the coupling) have to be holomorphic in a neighborhood of
the circle (resp. the product of circles).

We derive in this setup new limit theorems for the asymptotic behavior of
the temporal empirical measure associated to the system: for a large class
of observables, we obtain in Theorem 4.2.3 a Central Limit Theorem and
Moderate Deviations Principle.

We obtain also a partial Large Deviations Principle, see Theorem 4.2.2.
This partial result implies in particular exponential convergence to equilibrium.

Indeed, our results follow from methods of [95], where (in the same vein as
Bricmont and Kupiainen [12] or Baladi et al [4]) Rugh proves the existence
and uniqueness in a restricted class of an invariant locally absolutely continuous
measure.

Rugh uses a sharp combinatorial analysis of the finite system operators
to construct a transfer operator associated to the infinite system satisfying a
spectral gap property on an adequate Banach space.

Our proof consists in an adaptation of this construction to perturbed transfer
operators and a perturbation argument to preserve the spectral gap property.

We define the model in Section 4.1 and give the results in Section 4.2. We
then prove the probabilistic results in Section 4.3. The method is similar to
the proofs of [92] or [15]. Proof of an intermediate result on the existence of
transfer operators and their spectral properties is given in Sections 4.4 and 4.5.

! This Chapter corresponds to an article with same title, to appear in Probability Theory
and Related Fields.
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4.1 Definitions

4.1.1 Expanding maps

We consider S! = R/Z as a subset of the complex cylinder C = C/Z. This
allows us to work with functions not only real-analytic on the circle but holo-
morphic on a small annulus A[p] = {# € C : |Im 2| < p} for p > 0. For
such functions, we are able to use complex analysis and this is the basis of the
method introduced in [41] and [95] to construct transfer operators.

Thus, the single-site functions we will use are real-analytic expanding func-
tions on the circle in the following sense:

Definition 4.1.1. For p > 0 and A\ > 1, we say that f : Alp] — C is a real
analytic (p, A)-expanding map if f is continuous in Alp|, holomorphic in its
interior, f(SY) = St and f(OA[p]) N A[Np] = 0.
The set of all such functions is denoted E(p, A).

Remark: Functions of £(p, \) are also A-expanding in the classical sense, i.e.
they verify |f'| > A > 1 on the circle (see Appendix A in [95]).

4.1.2 Configuration space

We take €2 an index set and define the configuration space of our dynamical
system as the product of circles :

Sa=[]5" c4a=]]All

pEN PEQ

(2 can be quite general and could even be uncountable. But our main interest
will be Q = Z4. For this case, some spatial behavior can be studied (see [95]
or [5] for such applications).

4.1.3 Spaces of coupling and observables

Let F be the set of finite subsets of 2, containing the empty set. For all A € F,
we denote Sy = [[,c4 S' C Ax = [L,en Alp]. We call By the set of functions
which are continuous in A, and holomorphic in its interior.

For K C A, we denote jyox : Ex — Ej and jy : Eyn — C(Agq) the natural
injections, then define E(Agq) as the closure of Uperja(Er). E(Agq) is in fact
the space of weakly holomorphic continuous functions on Aq (see Appendix B
of [95]).
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We want to control the spatial expansion of the functions which will play
the role of coupling and observables. For this, we choose a parameter 0 < 0 < 1
and define:

Hy = {¢ € E(Aq) : ¢= ZJA¢A with ¢, € Ej and 207|A‘|¢A| < 00}

AeF AeF

with, for ¢ € Hy :

6]y = inf {Z 0~™|gal = (61)per such that ¢ € Ey and ¢ = ZjA¢A}

AEF AEF

Then (Hy, | - |,) is a f-penalized inductive limit of the spaces Ej. This defines
a Banach algebra. If § < 1, functions of Hy depend weakly of big sets A. For
=1, H = E(Aq) and |- |, = |- |- We denote Hj the set of real-analytic
maps of Hy.

4.1.4 Coupled maps

We can now define the class of dynamical systems we want to study:

Definition 4.1.2. For p > 0, A > 1,0 <0 <1 and 0 < k < o0, we take
(fp)pEQ expanding maps from E(p, \), and (gp)][JEQ coupling maps from Hj such
that |gp|, < k.

We define the associated coupled analytic map as Fp = (F,)
where :

peQ : AQ — CQ,

Fy(2) = fp(2) + go(2) VpeQ
We denote CM|p, A, 0, k] the space of all such coupled analytic maps.
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4.2 Results

For all observable b € C(Sq) and all T > 1, we write:

T-1

STb:ZboFt

t=0

In [95], an Ergodic Theorem for the random variables Srb under Lebesgue
measure and decay of correlations for the limit measure are proved under the
assumption that the coupling is weak enough:

Theorem 4.2.1 (Th. 2.1 of [95]). For every p > 0, A > 1, there exists
Bo(p, \) € (0, %) such that for 0 < Oy there is k > 0 for which the following
holds for all F € CM|[p, )\, 0, K]:

1. There exists a natural probability measure v invariant under F, i.e.

F'v=uv,

2. For all b € C(Sq), m®-almost every x (with m the Lebesgue measure on
the circle),

1
lim —STb=/ bdv (4.1)
T Sq

T—00

3. There exists v > 1 and 0 < ¥ < 1 such that for all b € Hy, a € Hy and

T>1,
/bOFT-adl/—/ bdl// adv
Sa Sa Sa

These properties are consequences of a more technical result, the fact that
a transfer operator associated to F' exists on a well chosen Banach space and
has a spectral gap below 1, which is the simple maximal eigenvalue. They are
really an infinite dimensional version of classical single site results.

< 2blylalyy" (4.2)

Our method consists in generalizing the construction of this operator to its
perturbations by potentials and then extending the spectral gap by perturba-
tion theory (see Theorem 4.3.1 and its proof Section 4.4 for more details).

We improve the result of [95] with the following large deviations upper
bound, and an associated partial lower bound (see Theorem 4.3.2 for a more
precise statement):

Theorem 4.2.2. Under the same conditions on the parameters as in Theorem
4.2.1, for all uw € Hy, there exists a lower semi-continuous, conver and non-
negative function I, : R — R U {+oc}, with a unique zero at fSn udv, and

there are a, < fsg udv < b, such that:
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1. For all closed F' C R:
Stu(z)
T

1
lim sup = log m" (z : € F) < - 1161}1; I,(x) (Upper Bound)

T—o0 T

2. For all x € (ay,by,) and § > 0:

.1 Q ~ Sru(z)
11Trri)1o{)1fflogm (z -

€ B(m,d)) > —I,(x) (Lower Bound)

Thas implies in particular that the convergence in (4.1) is exponential, which
means that for all A € R such that fSn udy & A:

1
lim supT10g7nQ {z : Sru(?) € A} <0 (4.3)

T—o00 T
Moreover, we obtain new probabilistic results for the random variables S7u
under Lebesgue measure, namely a Central Limit Theorem and a Moderate
Deviations Principle:

Theorem 4.2.3. Suppose the hypotheses of Theorem 4.2.1 are satisfied. For
every u € Hy, we write m,, = fsg udv. Then the limit

. Stu —Tm,, 2
lim — | dv

2
u

ol =0 iff  JveLl*(v) suchthat u=v—voF inL*(v) (4.4)

exists and is non negative. We denote it o2 and have the following condition:

For u such that o2 > 0, we have:
(STU, - Tmu
VTa,

and for all % <a <1, ACR Borel set:

>* (m®) % N(0,1) (CLT)

2 1 S —Tmy,
_inf 2 < lim infmlog m* (z : ru(?) T ¢ A)

a:ejl 20‘5 T—oo T
_ 1 Q Stu(z) — T'my, P
< 1171}1_)5;5p Toa—t logm (z : Ta €A) < —ilelg 907 (MDP)

Remark. All results above are given with Lebesgue measure as initial proba-
bility. In fact, they remain true taking measures in the Banach space on which
our operators act (exactly on the subset of this Banach space which contains
probabilities, denoted M%, see Section 4.3.1). We will prove our results in this
more general context. The same generalization for the ergodic theorem (4.1)
is valid and the proof of [95] adapted in a simple way.
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4.3 Use of the spectral gap

In this section, we will prove Theorems 4.2.2 and 4.2.3 given an intermediate
result (Theorem 4.3.1) on the spectral gap for perturbed operators. We use in
these proofs the same type of methods as in the papers of J. Rousseau-Egele
[92] or A. Broise [15].

4.3.1 Space of densities
For K C A, let mga : Ex — Ex be the projection defined by:

TrAdA(2K) = da(za) mM\E (dzp\ k)
SA\K

If A =Q, we will note 7 = g q.

Following [95], we define now the Banach space on which our operators
work. We need to take it sufficiently large, and specifically not included in
L*(dm®). Indeed, in the uncoupled case (when the couplings g, are zero), we
know that the natural measure will be the infinite product of the SRB measures
hpdm for the single site functions f,, which will generally not be absolutely
continuous with respect to Lebesgue measure. To get a large enough space,
we choose a parameter 0 < # <1 and define:

My = {(15 = (¢a)aer @ Tandn = oa YA C A and ||¢||, = iugewkﬁﬂ < 00}
€

(Mg, || - |l5) is a Banach space and a Hg-module: g =), » gn element of Hy
acts on ¢ = (Pp)acr t0 get g x ¢ € My defined by:

(g* )y = > manun (Jauaar(9a) - aun)

ANeF

and the following bound holds: ||g * ¢, < |g],l|®l|,-

As soon as 07! > sup,cq |yl , My contains the uncoupled natural measure
®pea(hpdm). This measure is represented by ¢ = (dr =[] en hp(zp))Aef,
although it is not absolutely continuous with respect to Lebesgue measure.
More generally, if we consider the following subset of M,:

g = {¢€M9 : sup \¢A(ZA)|dzA<oo}

AeF Js,

then ever € M} can be seen as a measure on Sq defined by
y ]

| oo =6t0)=Jim | guouim*
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for every g € C(Sq) and g € C(Sy) such that gy — g.

All these measures have finite marginals on S) which are absolutely continuous
with respect to m*, with density ¢ € E(A,). We will denote M?% the set of
probability measures in M.

4.3.2 Spectral gap for perturbed transfer operators

We state now the existence and the property of spectral gap for perturbed
transfer operators:

Theorem 4.3.1. For F € CM|p, A, 0, k], whose parameters satisfy conditions
of Theorem 4.2.1 and with 9, v and v as in this result, there exists for all
T > 1 an analytic functional:

M® . Hy — L(My, My) (4.5)
U —> MéT)
satisfying:
e There exists Ty > 1 such that M\") € L(My) if T > T,
o [MD)] < el o [IMD — Mg < Mo —1 (4.6)
o MW o M) = MDD fort>1,T > Ty (4.7)
o M (M3) c My (4.8)
o / bo F exp (Sru) dp= [ bd(MM¢) VbeC(Sa), € M7 (4.9
SQ SQ

T
Moreover, for all § < * 1

write for k> 1:

, there exists p > 0 such that if |u|, < p, we can

M) = NFTo () Q, + RE (4.10)

with, for Dy(0, p) the ball of radius p around 0 in Hy:
e )\ :u€ Dy0,p) — A(u) € C is analytic and satisfies \T° (u) € D(1, )
and \(0) =1,

e Q : u€ Dy0,p) — Q, € L(My) is analytic and satisfies Q> = Q,
Qo = vmy and ||Q, — vml| < 62,

o R :ue Dy0,p) —> R, € L(My) is analytic and satisfies Sp(R,) C
D(0,v " +6) and || RE|| < (v ™ + 20)*.
Remark. The important fact in these estimates is that they imply for such wu:
IR
koo [ARTO (u) |

so that A(u) will give the main term in asymptotic estimates.

=0
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4.3.3 Identification of the derivatives of A(u)

Analyticity in the previous result is understood in the general sense given
for example in Definition 3.17.2 of [46]: namely a map is analytic when it is
expandable around each point as a convergent series of homogeneous terms
with increasing degree. For A, an analytic function of u on Dy(0, p), we can
write its expansion around 0:

1 U
Aw) =) —0"\(0;u)
n>0
where in fact 8°A(0;u) = A(0) = 1 and 9"A(0;u) = 25| _ A(zu).

The key of our probabilistic study is the identification of the first two
derivatives of A in real-analytic directions with statistical estimates of the
system.

Proposition 4.3.1. For every u € Hy, we have the two following identities:
Sru —Tmy \°
O \(0;u) = / udy =my O*\(0;u) = lim <u) dv = o?

Remark: The identifications of 9'A\(0;u) and 9*A(0;u) with the mean and
the asymptotic variance of u under the equilibrium state v are natural results
in view of classical thermodynamic formalism results (see [93]): A(u), in the
domain where it is defined, really plays the role of a topological pressure.

Proof.
- Identification of ' A\(0;u). We will decompose each T > 1as T = kTy+T,
with 0 < T < Tj, and write:

1 U 1
[ () = oo 5 5) - P

We have then a uniform estimate for the term with 7"
T 1 To
exp (—T|u|oo> < exp (TSf (uo FkTO)) < exp (T|u|°°> (4.11)

For the remaining term, if T' > %, we apply the identity (4.9) and the spectral
decomposition (4.10) to M(%kTO) to get:

1
(kTo)
exp | =S 0u> dv =my ( Mz (v
/SQ (T - ( t ())

u

= \FTo (T> 7 (Qu(v)) +m <Rk% (1/)) (4.12)
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We can now evaluate the limit as 7" tends to infinity of each term in this
expression:

\kTo (%) = (1 + %61/\(0; u) + o (%))M — exp (0" A(0;u))

because the derivatives 0" A(0;u) are n-homogeneous and kTﬂ — 1. It will be
the main term in our estimation.

We control the two others:

Mo (Q3() =1 < [|@3 = Qofl Ivlly — 0

by continuity of ), and:
k _ k
o (R )] < Ry || lly < (v ™ + 28)“[Iwlly, — 0

We get, using estimate (4.11) and inserting previous limits in (4.12):

T—00 —00

1
, o (KTo _ ,
lim . exp (—TSTU> dv = Jllm ) (M% )(1/)) = exp (0'A\(0;u)) (4.13)

On the other hand, (4.2) implies that v is mixing, hence ergodic, which
gives the limit, because u is bounded:

1
lim exp (—STu) dv = exp </ udl/) (4.14)
We can identify both RHS in (4.13) and (4.14) to get:

81)\(0;u)=/ udv
Sa

- Identification of 8*A(0;u). It is enough to show that for v € H} such
that 0'A(0;u) = [ udv = 0, we have:

. ST’LL 2 a2 .

For this, u being bounded, we know that we can write:

Y = ][ oo ()
— | dv = — e —Sru ) dv = —
/SQ (ﬁ 0|,y Js, P \VT" o |,
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2 5 .
For T > (@) , we write again 7" = kTy + T with 0 < T < T, and use
the composition rule (4.7) and the spectral decomposition (4.10) to get:

T (M(Zj (1/)) = \ITo (%) g (M(;;) o Q\%(l/)) + 7y (M(&? o R’“% (y)>

We want to derive twice this last expression:

~

x

(;9_; . ()\’“TO (%) mp (Mg_i;) o Q%(V)»

= (vw)"(0) = v"(0)w(0) + 2v'(0)w'(0) + v(0)w" (0)

with v(t) = M (L) 50 that v(0) =1, v'(0) = 0, and v"(0) = ELg2\(0; u),
T

5 5

and w(t) = my (M(tf o QtTu(V)), so that w(0) =1, and
T

N

w"(0) = %m (M@ 0 92Q(0: u) + 20" MD(0; u) 0 ' Q(0; u)

+ "M (0;u) 0 Qo ) (v)

which goes to zero when 7' goes to infinity.
In the same way

- =0 (7r0 (M(t_f) 0 R’“w(’/))) = zm (MO(T) 0 0*R*(0;u)

ﬁ VT VT T

+ 20" MD(0;u) 0 0" R (0; u) + 02 M@ (0;u) o R'g) )

which goes to zero when T goes to infinity since limy_,o, R* = 0.
Combining all these results, we get

2
lim —

Tooo Ot2 VT T—00

kT
0 (M(g:)(y)) = lim TOOQ)\(O; u) = 0> \(0; u)
t=0
This, together with equation (4.15) implies the desired equality:

Stu 2
2 : = 1 = = 2 >
0°A(0;u) 711_1)1010 ) (\/T) dv=o0,>0

and gives also the existence of the limit. O
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4.3.4 Condition for positivity of o2

It is straightforward that u = v — v o F implies 02 = 0 because in this case
Sru=v—wvolFT.

For the necessary condition in (4.4), we have to introduce the adjoint of the
composition by F, P: L?(v) — L*(v) defined by

/SsooF-wdv=/ p-(PY)dv  Vo,9 € L(v)

Sa

and we note that if u € Cy(Sq) and g € Hy, then we can use the general
formulation of the spectral gap property of My (see Theorem 4.4.3) to get:

/u-PngV:/ ud(MéT)(g*l/))
SQ SQ

_ (/SQudy> - (/Sngdl/> +/Snud(RoT(g*V))

Hence, when m, = 0:

< [ulyy ™" lglgllvlly (4.16)

/ u-PTgdy
Sa

This estimate allows to give another expression for o2. We write:

T-1

1 20, — [ 2 - E/ k
T/SQ(STU) dV—/SQu dV—I—ng(l T) Snu PPudv

-1
=—/ u?dy + 2 (1—5)/ u- Pfudy

and (4.16) implies the existence of

N =

bl

1
o2 = lim —/ (STU)Zdl/Z—/ u?dy + 2
T SQ SQ

Z/ u - Pkudy
T—o0 SQ

k>0

If o7 = 0, then [g_ (Spu)*dv = —2T Y or [, v Prudy — 22;‘::_01ka9 u -
P*udv, hence Su is bounded in L?(v) by estimate (4.16) : ||Spu||z2p) < C
for all T" > 0.

Again with estimate (4.16), for g € Hy:

I(g) = lim STu-gdl/=Z/ u- PPgdv
SQ SQ

T—00
k>0
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defines a L?(v)-bounded linear functional on Hy, because [I(g)| < C||g||r2()-
This functional extends then to L?(v) by density of Hy, and there is S, € L?(v)
such that:

l(g) = lim/ Sru-gdv = Sy gdv
Sa Sa

T—o0
In the same way, lim7_, fSn wo FT . gdv =0 for every g € L*(v).

We get then for every g € L?(v):

/u-gdu: Stu - gdv — STqu-gdy+/ wo FT . gdv
Sq Sq

SQ SQ
= Stu - gdv — STu-Pgdl/—i—/ wo FT . gdv
Sa Sa Sa
— Sy gdv — Su-Png/:/ (Sy —SyoF)-gdv
Sa Sa Sa

as T goes to infinity. This proves the desired identity u = S, —S, o F in L?(v).

4.3.5 Proof of the Central Limit Theorem

To show that % converges in law under any initial probability ¢ € M¥E
to the standard normal law, it is enough to show the convergence of its Laplace
transform. We treat only the centered case and note that this result is valid
even if 02 = 0.

Proposition 4.3.2. For all v € Hj such that m, =0 and for all $ € MY, we
have:

, t 2,
Th_)nolo . exp <ﬁSTu> d¢ = exp <§au> VieR (4.17)

If 02 > 0, this implies the central limit theorem (CLT) by Lévy’s Theorem
(see for example Theorem 2.5.1 in [10]). The case 02 = 0 corresponds to a
faster convergence to the limit.

Proof. We proceed as in the proof of the first part of Proposition 4.3.1, but
replace = by ﬁ We can then use the decomposition (4.10) as soon as T >

T
(=

P

As we take m, = 0'\(0;u) = 0, the main term in \¥7° (%) will be the
second derivative:

i (1) = (14 Zaaon +o (L)) — e (Lm0
VT 21" T 2-

when 7' goes to infinity. O
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4.3.6 Proof of the Moderate Deviations Principle

A Moderate Deviations Principle with parameter % < a < 1isin fact a large

deviations result for the laws of the random variables % For these the

exponential scale of probabilities is known to be of the order of 72!, This
will then be the speed of the large deviations result (see Theorem 3.7.1 in [32]).

It is hence sufficient to evaluate the appropriate log-Laplace transform:
. 1 20—1 STU
A (B) = Jll_rgo Toa1 log /sg exp (BT ) do

. 1 Sru
_jll_rgomlog/sﬂexp (ﬁTl a) do

Proposition 4.3.3. For all fized % < a<1, foral$e MY and all u € Hj
such that m, = 0, we have:

Ao (B) = 702 (4.18)

The analyticity of A,(8) allows to apply a general form of Gértner-Ellis
Theorem (see Theorem I1.6.1 in [40], in fact a generalization to various speeds
of convergence in the Corollary 2.1.2). The latter says that % satisfies a
Large Deviations Principle with speed 72! and rate function given by the

Legendre transform of A,:

Io(z) = Ag () = sup (Bz — Aa(B)) = o=,

BER 202

which is independent of a, if 62 > 0. This result is exactly the property (MDP)
of Theorem 4.2.3.

If 02 = 0, then 1,(0) = 0 and I,(z) = +oo for all  # 0, which corresponds to
a trivial case.

Proof. We can proceed as for the Central Limit Theorem because T1™% — oo
as T — oo so that, for T great enough, we are again in the domain where
Theorem 4.3.1 can be applied. The main difference is that f 5o EXP (5 7‘?{ 1;) do

diverges exponentially fast so that we need the factor

T?a - to rescale it.

For T = kTy + T with T > ('ml‘:”a) , we denote ur = Tl —. Then:

BT el
exp (_Tloalu|oo <exp (Spur o F*) < exp { 7= fuloo
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and:
/S exp (ﬂ?“f_"f) dg = my (Mg 8) = N (ur) 7o (Qurd) + mo (Ryp0)
with:
o o (V7 ) = 77 #h0g (14 om0+ 0 (175 ) )
— %282)\(0;10 = %2 2 asT — o0

We have for the remaining term:

1 i RZT(/ﬁ
T2a 1 log (W@ (Qus®) + /{0’“(T07(u;p)))

which tends to zero when 7" goes to infinity since

7o (R5T¢) < (7_T0 +26

k
79 (Qurd) — 1 and IO (117 T ) Iélly — 0

We get in conclusion that

As(B) = lim L lo ex _b_ dqﬁzﬁ—QJ2
a oo 721 08 [ P\ Timagy 9 7u

4.3.7 Proof of the large deviations result

We cannot prove a complete Large Deviations Principle because the existence
of the spectral gap for M1ST°) in Theorem 4.3.1 is valid only for small v and
the scaling taken to compute the log-Laplace transform is not the same as for
moderate deviations (it corresponds to the case @ = 1). What we can obtain is
for every u € Hy a complete upper bound and a partial lower bound controlled
by a rate function with a unique minimum.

For u € Hj and ¢ € MY such that ||@|, < 6=2 (this is a technical assump-
tion which is not very important: it is satisfied by Lebesgue measure, and we
can modify ¢ in Theorem 4.3.1 such that it is satisfied by any fixed ¢), we
write:

Ay(B) = limsup — T log/ exp(BSru) do
Sa

T—00

the limit of log-Laplace transforms of Syu.
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Proposition 4.3.4. For || < ﬁ, the map

T—00

8 Au(8) = Jim Llog [ exp(3Sru) do=log(\(5w)  (4.19)
Sa

15 analytic.

Proof. We proceed exactly as in the proof of Proposition 4.3.3, with 3| < £~

such that: e
mo (M) = X0 (Bu) 7o (Qpu(6)) + 7o (5,(9))
with .
T log A0 (Bu) — log A (Bu) when T — oo
and ( : ))
1 o (15, (0
7 log (Ww (Qpu(@)) + W)
tends to zero when 7' goes to infinity, since
RE,
o (Qpud) — 11 < 8°[|0]l,  and %ﬂ(ﬁ(f)))‘ —0
O

This local differentiability implies the following partial large deviations
result:

Theorem 4.3.2. For all u € Hj and ¢ € MY such that ||¢]l, < § 2, we
define:
I,(z) = sup (Bz — Au(B))

BER
Then:
1. 1, is convex and lower semi-continuous, I,(x) = +oo if |z| > |u|,
I,(z) > 0 and:
I,(x) =0 if and only if x = m, (4.20)

2. For all closed F' C R:

T—00 T z€eF

lim sup % log ¢ (z : Sru(2) € F) < —inf I,(z)  (Upper Bound)
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3. For all x € A, (—Lo Lo) and 6 > 0:

ulg” |ul

lim infl log ¢ (z : Sru(z) € B(x, 5)) > —I,(x) (Lower Bound)
T—oo T T

Proof. We are exactly in the context of Gartner-Ellis Theorem stated in The-
orem 2.1.4. I, is the Legendre transform of A,, hence convex and lower
semi-continuous. Since |A,(f)| < |Bulw for any B, I, is infinite outside

[—|t|oos [tt|oo]. When there is A € ( £, £ ) such that x = Al (), then,

lulg ? |ulg

by convexity of A,:

Au(A) < Au(n) —(n—A)z VnpeR
<z — I,(z)

and A, (\) =sup(A\y — I(y)) > Az — I,(z), hence A — u(\) = Az — I, (x).
Moreover, if A, () = Ay — I,,(y), then Oy < A, (A + 0) — A, ()) for all § which
gives taking 6 to 0:

y=N\) =z

Then z is an exposed point for I, with exposing hyperplane A. We can hence
apply Theorem 2.1.4 to obtain points 2. and 3. of this result.

The previous analysis gives also that I,(z) = 0 if and only of z = Al (0)
My

Ol
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4.4 Perturbed transfer operators and spectral gap

In this Section, we explain how to modify [95] to obtain perturbed transfer
operators and preserve the spectral gap property. This analysis gives the proof
of the intermediate Theorem 4.3.1. The precise construction of the operators
is given in Section 4.5.

4.4.1 Finite box operators

The construction of the transfer operators is well understood by looking at
restrictions of the coupled map to finite boxes: we fix some boundary condition
¢ € Sq and define for all A € F:

FA ZAA —)CA
ZA F(ZA\/fAC)|A

where zp V £yc denotes the point w € Sq such that w; = z; for all 7 € A and
w; = & for all i € AC.

This function F) is expanding as soon as k < (A — 1)p and we can define the
associated transfer operator Ly : Ey — E\ as follows:

/ (poFA-wdmA:/ @ - Ly(h) dm™ Vo, € Ey (4.21)
SA SA

This is a classical tool to study asymptotic properties of such dynamical sys-
tems (see [3] for an extended study of this domain).

In the same way, for u € F,, we can define a perturbed operator by:
| eobievdmt = [ o Myuw)dmt Vo e By
SA SA

Or, equivalently:
Myu(¥) = Ly (€" - ) (4.22)

The interest of My, comes from the formula:

T-1
/ exp | Y uoFy | -ypdmt = [ MY, (¢)dm"
Sa —0 Sa

which identifies the Laplace transform of " u o F}; with some spectral char-
acteristic of M, ,. We thus need an infinite dimensional equivalent of these
operators, as described in Theorem 4.3.1.

The method to construct them is based on the following perturbative ex-
pansion, derived from Theorem 3.2 and Lemma 3.4 of [95]:
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Theorem 4.4.1. If kK < (A= 1)p, Lp has the integral representation:

Ea@)(@n) =+ [ TT (kom0

PEA

+ 3 o (g zvin V €vene) ) (an) ' (d2n) (4.23)

VeF

where:

o [) = HpEA 0A[p] and " is the unique holomorphic differential form on
[1,ca C which extends m.

e [ is the periodic Cauchy kernel:

k(w,z) = %cot(w(z —w)) = ! Z !

2T z2—w—+n
nez

e 5(p,V) are weakly holomorphic on D,y = A, x '), x quv\{p} A, (i.e.

continuous in all variables and holomorphic in w, € Int(Ap) and zy\(p} €
Int(Av\ipy), see Appendiz B of [95]) such that:

627m 1

V] = —
Z 0 ‘5p,V‘ < Cﬁ T oe2r(A-1p _ 21k p2r(A—1)p _
VeF

and

Bo,v (Wp, 2vugpy) dwp =0 Yz, € T, 217\ (p) € Av\(p)
Sp

4.4.2 Existence of the operators

We can write a similar integral representation for L1 and expand it by inter-
change of products and sums. This gives naturally the kind of configurational
operators we need to introduce and control to define an infinite-dimensional
transfer operator. That is the method implemented by H.H. Rugh in Section
4 of [95].

To generalize his construction to perturbed operators, we cannot, for tech-
nical reasons, proceed as in (4.22) for the finite dimensional setting. We have
to adapt the proof of [95] with some additional terms corresponding to the
expansion of perturbations U € Hy and to control the new estimates. This
allows to construct the general operators described in the following result:
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Theorem 4.4.2. Suppose the hypotheses of Theorem 4.2.1 are verified, then
there is 0 < 9 < 1 such that for all’T > 1 we have a multilinear functional:

£@ . Hj — L(My, My)
(1)
(o, - Ur—1) ¥— Lyt

with the following properties:

e There exists Ty > 1 such that LET Ur ] € L(My) VT >1T,

i’[ (4.24)

° LUO: UT-1]
t=0
¢ LE%—T),W 1,U05-,Ur—1] — LE‘t/)b,---,Vt—l] © ngr--,UTA] if T 2Ty (4.25)
D(MG) c M (4.26)
T-1
./ bo ™. [[Uro F'de = bd( e l]qﬁ) Vb € C(Sq), ¢ € M
Sa =0

(4.27)

Proof. As already mentioned, this proof essentially follows the construction of
Part IV of [95]. We only have to add in configurations the terms corresponding
to the perturbations U;. We can do it and keep good estimates uniformly in
U € Hy. We detail the proof in Section 4.5. O

Remark: The operator constructed in [95] corresponds to Lg ) 1

Operators of Theorem 4.3.1 are a particular case of the general operators
constructed in Theorem 4.4.2. For u € Hy, we take

M( ) — (D)

[e,....e"]
We can already obtain some properties of these operators:

Theorem 4.3.1 - First part. Since it is the composition of the analytic function
u — e* and of the multilinear map £, M is analytic.

We can write explicitly the series expansion of M) around a point u:

M, = 37 oMM s ),
nZO

where

n n!
o M) (u;h) = Z ﬁLanow,...,h“T—leu]a
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which is an element of L(My, My) (or L(My) if T > Tp), is homogeneous of
degree n and satisfies the bound

|0 M T (u; B)|| < (T|h|y)" e e

hence we control the difference between two operators by:

H M), - MéT)H < (eTMs — 1) ¢THle

Estimate (4.6) is the particular case of this inequality around u = 0. Formulas
(4.7), (4.8) and (4.9) are easily deduced from (4.25), (4.26) and (4.27). O

4.4.3 Proof of the Spectral gap property
) _ (@)

The central result in [95] is a spectral gap property for MéT [

direct consequence of his Lemma 4.25 and can be stated as:

E Itis a

Theorem 4.4.3. Under the same assumptions on the parameters as in The-
orem 4.4.2, MéT) can be written for all T > Tjy:

M (g) = ( /S Q ¢de) v+ R (9)

with v € My, MéT)(l/) =v and |RT(¢)|| <77, so that Sp(R") c D(0,~~7).

We cannot generalize this result to all our perturbed operators, but only
extend it to small u as stated in the second part of Theorem 4.3.1. The proof
uses an adaptation to our case of the Theorem of Kato-Rellich (see Theorem
XII.8 in [91] or Theorem VII.6.9 of [38] for a more general result). We recall
below the main steps of its proof and specify some estimates:

Theorem 4.3.1 - Second part. For M € L(My), let Res(M) = C\ Sp(M) de-
note the resolvent set, and for A\ € Res(M)

RO\, M) = (Ald — M)~

the associated resolvent function.

We denote M, = M{"™ € L(My). Then, by Lemmas VIL6.3 and VIL6.4
of [38], we get that for any fixed § < 1_73_%, there exists ¢ > 0 such that
||M, — Myl|| < € implies:

L. {X : d(\,Sp(My)) > 6} C Res(M,)
2. |R(\, My) — R\, Mp)|| <9 VA s.t. d (A Sp(My)) > 6
3. u — R(A, M,) is analytic VA s.t. d (A, Sp(My)) >0
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The last statement is a straightforward generalization of the proof of Lemma
VII.6.4: the set of analytic functions in our sense is stable by the same opera-
tions as for classical analytical functions.

Then Sp(M,) C D(1,6) UD (0,777 + §) and if we denote

1 1
Qu=—— R\, M) d)\ = —— R(\, M) d\
210 Jia—1)=s ( ) 2mi Jia—1/=25 ( )

the projection associated to the spectrum of M, included in D(1,6), we get
that @, is an analytic function of v and

1
1Qu—Qol| < 5/ |R(146e2™ M,) — R(1+6e2™ L10))||do < 6% <1 (4.28)
0

This, with Lemma VII.6.7 of [38] and the fact that Sp(L(Tp)) N D(1, ) {1}

where 1 is a simple eigenvalue, implies that Sp(M,) N D(1,8) = {\T° (u)},
where M, 0 Qu(1)
ATo () = u O Wy
=00

is a simple eigenvalue and an analytic function of w.

Now, setting

1
Ry =M, — 2\ (u)Q, = M, o <——/ R(\, M,) dA) :
{I\=y~To+6}

2mi
which is the projection on the rest of the spectrum, we get:
M) = Mo (y) Q, + RE,  with Sp(R,) C D (0,7 ™ + )

and

1

IR, — Ro ~ 9 /(R()\, M,) — R(\, My)) d)\H

1
g = 2 | 5L [ ROV |

1+e¢) (’)/_T0+5)5+6

<(
<26 taking ¢ smaller if necessary

so that ||RE|| < (y~To + 2(5)’c for every k > 1,u € Dy(0, p). O
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4.5 Construction of the operators

This Section contains a sketch of the construction of the transfer operator
done in [95] and presents also the main modifications which have to be done
to extend it to perturbed operators.

4.5.1 Single site operators

For f, € £(p,\) an expanding map on A,, the associated transfer operator
Ly, : E, — E, can be written (this is a particular case of identity (4.23)):

L) = [ b So(z)0() 17(d)

FP
It satisfies [, o Ly, = I, with [,(¢) = fs,, ®(2p) dz, and enjoys a spectral gap
property with the following estimates, uniformly in f, € £(p, \):

< et (4.29)

HL?PH <¢, and HL};

Ker Ip

where ¢, > 1, ¢, > 0 and n < 1. A proof of these results can be found in
Appendix A of [95].

4.5.2 Configurations

We define what a branching, the main element to define the configurations, is:

Definition 4.5.1. A branching pair (S,V) is composed by a subset S € F and
a function V : S — F. We denote V[S] = S U (UpesV (p)).

Given K € F, (S,V) a branching pair such that S C K, U € Hy with fixed
expansion U = Yy, .- Uy and W € F, we define H = K UV[S]UW and the
operator LK,(S,V),(U,W) : Ey — FEx by:

L syy,ww)(en)(wk) =+ /

SH\K

m™ (dzp\ k) /F 1 3w @p, 2vieyn)
K

peES

x 11 #wps fo(2))Uw (2w) o (20) 0" (dzc)
pEK\S

We then have some compatibility properties for these operators:
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Lemma 4.5.1. We have:

0 ifpe S
Tr\(p} K L (5,v),0w) = § Li\ip}(s,v),0.w) ifpe (VI[STUW)\ S
Ly svy,ow) o Tmpye  if p € K\ (V[SJUW)

(4.30)
and the sum

D Licgswyww) o Ta($) = Lis,v)we © Txuvis) (U * ¢)
WeF

is independent of the decomposition U =), Uw of U € H.

Proof. For the first part, we proceed as for Lemma 4.2 of [95]: the last equation
of Theorem 4.4.1 states that 3,y is in the kernel of [, i.e. of Tx\(p},x. Hence
if p € S, the term is null. When p ¢ S, the action of mx\(p},x removes the
corresponding term k(w,, f(z,) from the operator and replaces it by [, (because
lpoLy =1,). If pe (V[SJUW)\ S, this term was already in the operator,
otherwise it is added by the term mg\(p},4-

For the second part, we commute sum and integral, obtaining

Z L sy),ww) o mu(®) = Li(s,v),1,0) © (Z 7rKuv[S],KuV[S]uW(UW<Z5H)>
WeF WeF

and use then the projectivity of ¢ and the definition of the module product on
Ma. O

Given T > 1, Uy, ...,Ur_1 € Hy, we want to construct for any K € F an

operator ngUo,.--,UT-l] : My — Ex and control its norm.

We introduce configurations and associated configurational operators :
Definition 4.5.2. A configuration on K € F at time T > 1 is the choice of :
o Wr_q,...Wy € F, for the expansion of the perturbative terms U,
o (Sr_1,Vr_1),..., (S0, Vo), branching pairs for the expansion of the B, v,
e [ € F an initial state,

such that if K is expanded by Ky = K and K; = K1 U Vi[S] U W, for
0<t<T, the following conditions are satisfied:

S C Kyyq for0<t<T and I C Ky

We denote C[K,T] the set of all these configurations.
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To each configuration C' € C[K,T], we associate a configurational operator:
Lk [vs,....u7_1)[C] = LT Vo...0L®o Qf" 0Tk, : My = Eg

where

LW = LKt+1,(St,Vt),(Ut,Wt) and Qfo = H(1 - lp) H lp

pel pEKo\I

The following equivalent of Proposition 4.3 of [95] remains valid and will be
useful to construct the global operator on the projective Banach space My. It
is obtained applying recursively Lemma 4.5.1:

Proposition 4.5.1. If a C K € F, then:

La,[Ug,...,UT_l][C] ZfC € C[a> T]

. (4.31)
0 otherwise

ﬂ-a’KLKy[UOr'-’UT—l] [C] = {

Remark : The initial set I, introduced in [95] to prove the spectral gap, is not
necessary here. We keep it however to verify that in the case where U; = 1 for
all 0 <t < T, we really get the operator constructed in this paper.

For C € C[K,T] a given configuration, with (S, V;) the branching pairs, W,
the perturbative expansions and K = Ky C Ky 1 C --- C K; the expansion
of K, we call the points (¢,t) € UL K; x {t} points of the configuration and
classify them, calling (g, t):

e an inner point if ¢ € W,

e a vertex point if ¢ € V;[S;] \ W4,

e an apex point if t > 1 and g € S; 1 \ (V4[S;] U W),
e a free point otherwise.

A chain is a maximal sequence of points of the configuration v = (¢, t)s, <1<,
such that ¢ € S;,_1 and (q, 1)y, <i<s, are free points. t; is called the starting
time of the chain and |y| =t — t; its length. Such a chain is called:

e an apex chain if (g, ;) is an apex point,
e an initial chain if ¢; = 0, (¢, 0) is a free point and ¢ € I,

e an end chain otherwise.
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This analysis allows to separate the contributions of chains in Lg r,,...v,_,1[C]-
This is possible because the free points of a chain occur only in both uncoupled
operators before and after it, hence can be separated by Fubini Theorem of all
other integrands: If ch(¢) denotes all the chains starting at time ¢, interchange
of the terms in the integral gives:

L w,,....vr [C] = LOD TN o [T 0.0 Lo 0 Ko, 10QF 0Tk,

where U® : Ey, — Eg, is defined by U (¢) = (jx, w,Uw,)¢ and L® :
EKt — EKt+1 by

T(t) —
L = H Ly | Tk ke H MKtvﬂp,Vz@)

7€ ch(t) PES}

with L, = (Ly,)" and:
Mk, 8, v, P (Wps 2K\ p}) = £ /F Bp,viw) (Wps 2vipyuip}) O (2K, ) 1P (dzp)

Using this last expression, we can bound the norm of each Lk v,,..v5_1)[C]
by the product of the estimation for each term in its expression, using the
following estimates:

N
1Q7° o T || < (1 + 5) (4.32)
since Q7 o Ty = Y (= 1) i sy and |7y || < 97V

Mg, |l < 218y and U] < [Uyw,| (4.33)
||| <en or  ||L,|| < ¢n?  for v initial or apex chain (4.34)

This last fundamental estimate comes from the spectral gap result for the
single site operator Ly, (see estimates (4.29)).

4.5.3 Tree structures

We will now associate to each configuration a tree structure in an injective
way. This will allow us to bound the norms of configurational operators by
some more computable estimates. The set of trees is exactly the same as in
[95], but we will keep more of them to describe a configuration.

Definition 4.5.3. For T > 0 and p € Q, the collection of trees Y[p,T| is
defined recursively on T':
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e V[p,0] contains two elements: an initial leaf and an end leaf
o fort>1, Y[p,t] is constituted of the following trees:

— an end leaf
— an inittal chain of length t followed by an initial leaf

— an apex chain of length 0 < k < t followed by a branching over a

set V; at each g € V U {p}, we attach a tree y;_k_l € Y[g, t—k—1]

We associate now to each C' € C[K,T] a collection of trees, in fact one
ypr € Y[p,T] for each (p,T),cx and one y,; € Y[p,t| for each (p,t) inner
point, i.e. such that 0 < ¢ < T and p € W,. We do this recursively on 7T,
giving us a total ordering of €2 to go through the points associated to a given
time (see Figure 4.1 for an illustration of this construction):

For ¢ = 0, we associate to each p € K a tree y,, which is an initial leaf if
p € I and an end leaf otherwise.
Then, for 1 <t <T:

e we go through the p € S; 1 C K; and we take y(p,t) a branching over
the set V;_1(p), and we attach at each ¢ € V;_;(p) U {p}:

— y(g,t —1) if ¢ ¢ W;_; and y(g,t — 1) has not yet been attached to
another tree

— an end leaf otherwise

o for p € Ky [(Vi1[Se 1) UW; 1)\ Si 1], we forget the tree y(p,t — 1)
(already attached to another tree or kept until the end) and take for
y(p,t) an end leaf

o for p€ K;\ (Viea[Se 1] UWia):

— y(p,t) is an end leaf if y(p,t — 1) was already one (we forget the
length of end chains because it is useless in the estimates)

— otherwise, y(p,t) is a chain of length 1 attached to y(p,t — 1)

It should be noted that all y(p,t) for (p,t) inner points are never attached to
other ones: we keep them in our description of the configuration in term of
trees. In fact, the terms U, yy,, for U, chosen in Hy, will exactly compensate
the weights of these trees (see Proposition 4.5.4).

We define the weight of a tree as the product of the bounds of its components,
and for those, we take the bounds (4.33) for the branchings and (4.34) for the
chains. We estimate the other terms by:

1
|| end leaf || = ¢, and || initial leaf || =1+ 3
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K

Fig. 4.1: An example of configuration (left) with its associated tree structure (right).
Each circle represents the basis of a branching pair, each rectangle repre-
sents the perturbative term U;. To each of these inner points and to the
bottom points are associated independent trees.

Proposition 4.5.2. The map which to every C € C[K,T| associates the family
of trees (y(p,t) wheret =T and p € K, or (p,t) is an inner point) is injective
and we have the bound:

Ul 11 IIy(p,t)H] (4.35)

pPEW

T—1
1L oyt [C agy e < 1T Iv@ DI T
t=0

pEK

Proof. The tree structure contains in fact the whole information on the con-
figuration defining the operator, hence this one can be constructed back from
the tree.

Trees associated to a configuration contain exactly |I| initial leaves, giving
factor (1 + 3)’/, as well as all branchings and chains, with length kept in
case of initial or apex chains. Some additional end leaves may appear in the
construction, each giving a weight ¢, > 1. We get then the desired upper
bound. O

Our trees are exactly the same as in [95]. We can then use its bounds for the
weights of trees under the condition (TR) of [95]. We don’t write this condition
here, but just notice that for p and A given, there exists 6y(p, \) € (0,1/3) such
that for all < 0y we can find v < 7! (n is the gap of the simple site operator)
and « such that any F' € CM|p, A, 0, k| satisfies (TR) with this v. We write
below the results of Lemmas 4.20 and 4.21 of [95], which give these bounds:
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Proposition 4.5.3. The size of a tree is the sum of the length of its chains
added to the number of its branchings. Define:

up(s)= Y lylls™* @

yeY[p,T]

If condition (TR) is satisfied with v € (1,n7'), then there exists ¥ € (0,1) and
To > 1 such that:

uT(7) <67 (4.3
ur(y) <O T >T,y

4.5.4 Global estimates
We deduce from Propositions 4.5.2 and 4.5.3 above that:

Proposition 4.5.4.

Z HLKa[UO:---aUTfl][C]HM19_>EK S 9_|K‘ H |Ut|6 (437)

CeC[K,T)

T-1
<9 K H Uile  if T>Ty

Proof. Because of the injectivity of the description by trees, we have:

Z HLK’[UO:---,UT—J [C] ||M19—>EK

CECIK,T]
T-1
< 3 oI i T o]
CEC[KT 1pEK t=0 PEWL
T-1

< Y Huw®ITww! 1T wo

WoyoeyWr_1 pEK t=0 peEW:
-1

< T T (32w T o)

pEK t=0 \WeF pEW
and we can conclude with estimates (4.36). O

These bounds, together with the first part of Proposition 4.5.1 (which as-
sures compatibility of the operators constructed for different subsets K) make
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it possible to define:

T
LEUg,...,UT_l] = Z LK:[UOa---yUT—l][C]

CeC[K,T) KeF

as an operator from My to My, or to My when T > Tj, satisfying the
announced bound (4.24).

We see also that this operator is independent of the decompositions U; =
> wer Uyw writing, with Lo = Lk, s.,vi),1,0) and K; the corresponding
expansion:

Z L [vo,...vr_1[C] | (8)

CeC[K,T)

= ¥ (| X L0 i[Okl ]]) ]

(S7—1,Vr,) (ST-2,V1,) Kr_1
(4.38)

For this, we use inductively the second part of Proposition 4.5.1 and the fact
that any intermediate operator defines a projective family.

The multilinearity in the perturbation terms Uy, ..., Ur 1 is clear from this
last expression. We also can remark that Lg.)..;] = LD is exactly the Perron
Frobenius operator of [95], because in this case, all configurational operators

with a Wy # () are null.

We can then deduce the other properties of these operators by straightforward
adaptations of equivalent results in [95]: for the composition rule (4.25), we just
have to identify the configurations appearing in both sides. For the properties
(4.26) and (4.27), we prove that the constructed operator L¥) is the limit of
the restricted equivalent on finite boxes A when A goes to €2, then deduce the
properties going to the limit.
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